Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > com2an | GIF version |
Description: Thm. 4.2 Beran p. 49. (Contributed by NM, 7-Nov-1997.) |
Ref | Expression |
---|---|
fh.1 | a C b |
fh.2 | a C c |
Ref | Expression |
---|---|
com2an | a C (b ∩ c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fh.1 | . . . . 5 a C b | |
2 | 1 | comcom4 455 | . . . 4 a⊥ C b⊥ |
3 | fh.2 | . . . . 5 a C c | |
4 | 3 | comcom4 455 | . . . 4 a⊥ C c⊥ |
5 | 2, 4 | com2or 483 | . . 3 a⊥ C (b⊥ ∪ c⊥ ) |
6 | df-a 40 | . . . . 5 (b ∩ c) = (b⊥ ∪ c⊥ )⊥ | |
7 | 6 | con2 67 | . . . 4 (b ∩ c)⊥ = (b⊥ ∪ c⊥ ) |
8 | 7 | ax-r1 35 | . . 3 (b⊥ ∪ c⊥ ) = (b ∩ c)⊥ |
9 | 5, 8 | cbtr 182 | . 2 a⊥ C (b ∩ c)⊥ |
10 | 9 | comcom5 458 | 1 a C (b ∩ c) |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: gsth2 490 dfi3b 499 oi3ai3 503 i3lem1 504 com2i3 509 i3con 551 i3orlem7 558 i3orlem8 559 ud1lem3 562 ud3lem1a 566 ud3lem1b 567 ud3lem1c 568 ud3lem1d 569 ud3lem3d 575 ud3lem3 576 ud4lem1a 577 ud4lem1b 578 ud4lem1c 579 ud4lem1d 580 ud4lem1 581 ud4lem3b 584 ud4lem3 585 ud5lem1a 586 ud5lem1b 587 ud5lem1 589 ud5lem3a 591 ud5lem3b 592 ud5lem3 594 u3lemaa 602 u4lemaa 603 u3lemana 607 u4lemana 608 u3lemab 612 u3lemanb 617 u4lemanb 618 u4lemona 628 u3lemob 632 u3lemonb 637 u4lemc1 683 u1lemc2 686 u2lemc2 687 u4lemc2 689 u5lemc2 690 u4lemle2 718 u5lembi 725 u4lem1 737 u4lem5 764 u4lem6 768 u1lem8 776 u1lem11 780 u3lem13a 789 u3lem13b 790 u3lem15 795 test 802 test2 803 3vded21 817 1oa 820 bi3 839 mlaconj4 844 neg3antlem2 865 comanblem1 870 mhlem 876 govar 896 lem4.6.2e1 1082 |
Copyright terms: Public domain | W3C validator |