Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u3lembi | GIF version |
Description: Kalmbach implication and biconditional. (Contributed by NM, 17-Jan-1998.) |
Ref | Expression |
---|---|
u3lembi | ((a →3 b) ∩ (b →3 a)) = (a ≡ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i3bi 496 | 1 ((a →3 b) ∩ (b →3 a)) = (a ≡ b) |
Colors of variables: term |
Syntax hints: = wb 1 ≡ tb 5 ∩ wa 7 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: u3lemax4 796 u3lemax5 797 |
Copyright terms: Public domain | W3C validator |