QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u3lembi GIF version

Theorem u3lembi 723
Description: Kalmbach implication and biconditional. (Contributed by NM, 17-Jan-1998.)
Assertion
Ref Expression
u3lembi ((a3 b) ∩ (b3 a)) = (ab)

Proof of Theorem u3lembi
StepHypRef Expression
1 i3bi 496 1 ((a3 b) ∩ (b3 a)) = (ab)
Colors of variables: term
Syntax hints:   = wb 1  tb 5  wa 7  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i3 46  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  u3lemax4  796  u3lemax5  797
  Copyright terms: Public domain W3C validator