Proof of Theorem i2bi
Step | Hyp | Ref
| Expression |
1 | | leor 159 |
. . . 4
(a⊥ ∩ b⊥ ) ≤ ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
2 | 1 | lelor 166 |
. . 3
(b ∪ (a⊥ ∩ b⊥ )) ≤ (b ∪ ((a
∩ b) ∪ (a⊥ ∩ b⊥ ))) |
3 | | df-i2 45 |
. . 3
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
4 | | dfb 94 |
. . . 4
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
5 | 4 | lor 70 |
. . 3
(b ∪ (a ≡ b)) =
(b ∪ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) |
6 | 2, 3, 5 | le3tr1 140 |
. 2
(a →2 b) ≤ (b ∪
(a ≡ b)) |
7 | | leo 158 |
. . . 4
b ≤ (b ∪ (a⊥ ∩ b⊥ )) |
8 | 3 | ax-r1 35 |
. . . 4
(b ∪ (a⊥ ∩ b⊥ )) = (a →2 b) |
9 | 7, 8 | lbtr 139 |
. . 3
b ≤ (a →2 b) |
10 | | u2lembi 721 |
. . . . 5
((a →2 b) ∩ (b
→2 a)) = (a ≡ b) |
11 | 10 | ax-r1 35 |
. . . 4
(a ≡ b) = ((a
→2 b) ∩ (b →2 a)) |
12 | | lea 160 |
. . . 4
((a →2 b) ∩ (b
→2 a)) ≤ (a →2 b) |
13 | 11, 12 | bltr 138 |
. . 3
(a ≡ b) ≤ (a
→2 b) |
14 | 9, 13 | lel2or 170 |
. 2
(b ∪ (a ≡ b))
≤ (a →2 b) |
15 | 6, 14 | lebi 145 |
1
(a →2 b) = (b ∪
(a ≡ b)) |