Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u4lembi | GIF version |
Description: Non-tollens implication and biconditional. (Contributed by NM, 17-Jan-1998.) |
Ref | Expression |
---|---|
u4lembi | ((a →4 b) ∩ (b →4 a)) = (a ≡ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ud4lem1a 577 | . 2 ((a →4 b) ∩ (b →4 a)) = ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) | |
2 | dfb 94 | . . 3 (a ≡ b) = ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) | |
3 | 2 | ax-r1 35 | . 2 ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = (a ≡ b) |
4 | 1, 3 | ax-r2 36 | 1 ((a →4 b) ∩ (b →4 a)) = (a ≡ b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 →4 wi4 15 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |