Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u3lemnaa | GIF version |
Description: Lemma for Kalmbach implication study. (Contributed by NM, 15-Dec-1997.) |
Ref | Expression |
---|---|
u3lemnaa | ((a →3 b)⊥ ∩ a) = (a ∩ b⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anor2 89 | . 2 ((a →3 b)⊥ ∩ a) = ((a →3 b) ∪ a⊥ )⊥ | |
2 | anor1 88 | . . . 4 (a ∩ b⊥ ) = (a⊥ ∪ b)⊥ | |
3 | u3lemona 627 | . . . . . 6 ((a →3 b) ∪ a⊥ ) = (a⊥ ∪ b) | |
4 | 3 | ax-r4 37 | . . . . 5 ((a →3 b) ∪ a⊥ )⊥ = (a⊥ ∪ b)⊥ |
5 | 4 | ax-r1 35 | . . . 4 (a⊥ ∪ b)⊥ = ((a →3 b) ∪ a⊥ )⊥ |
6 | 2, 5 | ax-r2 36 | . . 3 (a ∩ b⊥ ) = ((a →3 b) ∪ a⊥ )⊥ |
7 | 6 | ax-r1 35 | . 2 ((a →3 b) ∪ a⊥ )⊥ = (a ∩ b⊥ ) |
8 | 1, 7 | ax-r2 36 | 1 ((a →3 b)⊥ ∩ a) = (a ∩ b⊥ ) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 |
This theorem is referenced by: u3lem13a 789 u3lem13b 790 |
Copyright terms: Public domain | W3C validator |