Proof of Theorem u3lem13b
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. 2
((a →3 b⊥ ) →3 a⊥ ) = ((((a →3 b⊥ )⊥ ∩
a⊥ ) ∪ ((a →3 b⊥ )⊥ ∩
a⊥ ⊥ ))
∪ ((a →3 b⊥ ) ∩ ((a →3 b⊥ )⊥ ∪
a⊥ ))) |
2 | | u3lemnana 647 |
. . . . . 6
((a →3 b⊥ )⊥ ∩
a⊥ ) = (a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
3 | | ax-a1 30 |
. . . . . . . . 9
a = a⊥
⊥ |
4 | 3 | ax-r1 35 |
. . . . . . . 8
a⊥
⊥ = a |
5 | 4 | lan 77 |
. . . . . . 7
((a →3 b⊥ )⊥ ∩
a⊥ ⊥ ) =
((a →3 b⊥ )⊥ ∩
a) |
6 | | u3lemnaa 642 |
. . . . . . 7
((a →3 b⊥ )⊥ ∩
a) = (a
∩ b⊥
⊥ ) |
7 | 5, 6 | ax-r2 36 |
. . . . . 6
((a →3 b⊥ )⊥ ∩
a⊥ ⊥ ) =
(a ∩ b⊥ ⊥
) |
8 | 2, 7 | 2or 72 |
. . . . 5
(((a →3 b⊥ )⊥ ∩
a⊥ ) ∪ ((a →3 b⊥ )⊥ ∩
a⊥ ⊥ )) =
((a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
(a ∩ b⊥ ⊥
)) |
9 | | comanr1 464 |
. . . . . . . 8
a C (a ∩ b⊥ ⊥
) |
10 | 9 | comcom3 454 |
. . . . . . 7
a⊥ C
(a ∩ b⊥ ⊥
) |
11 | | comorr 184 |
. . . . . . . . 9
a C (a ∪ b⊥ ) |
12 | | comorr 184 |
. . . . . . . . 9
a C (a ∪ b⊥ ⊥
) |
13 | 11, 12 | com2an 484 |
. . . . . . . 8
a C ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
14 | 13 | comcom3 454 |
. . . . . . 7
a⊥ C
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
15 | 10, 14 | fh4r 476 |
. . . . . 6
((a⊥ ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
(a ∩ b⊥ ⊥ )) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
(a ∩ b⊥ ⊥
))) |
16 | | coman1 185 |
. . . . . . . . . 10
(a ∩ b⊥ ⊥ ) C
a |
17 | | coman2 186 |
. . . . . . . . . . 11
(a ∩ b⊥ ⊥ ) C
b⊥
⊥ |
18 | 17 | comcom7 460 |
. . . . . . . . . 10
(a ∩ b⊥ ⊥ ) C
b⊥ |
19 | 16, 18 | com2or 483 |
. . . . . . . . 9
(a ∩ b⊥ ⊥ ) C
(a ∪ b⊥ ) |
20 | 16, 17 | com2or 483 |
. . . . . . . . 9
(a ∩ b⊥ ⊥ ) C
(a ∪ b⊥ ⊥
) |
21 | 19, 20 | fh3r 475 |
. . . . . . . 8
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
(a ∩ b⊥ ⊥ )) =
(((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥
))) |
22 | 21 | lan 77 |
. . . . . . 7
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
(a ∩ b⊥ ⊥ ))) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
(((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥
)))) |
23 | | ax-a2 31 |
. . . . . . . . . . . 12
((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) =
((a ∩ b⊥ ⊥ ) ∪
(a ∪ b⊥ )) |
24 | | lea 160 |
. . . . . . . . . . . . . 14
(a ∩ b⊥ ⊥ ) ≤
a |
25 | | leo 158 |
. . . . . . . . . . . . . 14
a ≤ (a ∪ b⊥ ) |
26 | 24, 25 | letr 137 |
. . . . . . . . . . . . 13
(a ∩ b⊥ ⊥ ) ≤
(a ∪ b⊥ ) |
27 | 26 | df-le2 131 |
. . . . . . . . . . . 12
((a ∩ b⊥ ⊥ ) ∪
(a ∪ b⊥ )) = (a ∪ b⊥ ) |
28 | 23, 27 | ax-r2 36 |
. . . . . . . . . . 11
((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) =
(a ∪ b⊥ ) |
29 | | ax-a2 31 |
. . . . . . . . . . . 12
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥ )) =
((a ∩ b⊥ ⊥ ) ∪
(a ∪ b⊥ ⊥
)) |
30 | | leo 158 |
. . . . . . . . . . . . . 14
a ≤ (a ∪ b⊥ ⊥
) |
31 | 24, 30 | letr 137 |
. . . . . . . . . . . . 13
(a ∩ b⊥ ⊥ ) ≤
(a ∪ b⊥ ⊥
) |
32 | 31 | df-le2 131 |
. . . . . . . . . . . 12
((a ∩ b⊥ ⊥ ) ∪
(a ∪ b⊥ ⊥ )) =
(a ∪ b⊥ ⊥
) |
33 | 29, 32 | ax-r2 36 |
. . . . . . . . . . 11
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥ )) =
(a ∪ b⊥ ⊥
) |
34 | 28, 33 | 2an 79 |
. . . . . . . . . 10
(((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥ ))) =
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
35 | | id 59 |
. . . . . . . . . 10
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) =
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
36 | 34, 35 | ax-r2 36 |
. . . . . . . . 9
(((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥ ))) =
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
37 | 36 | lan 77 |
. . . . . . . 8
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩
(((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥ )))) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
38 | | id 59 |
. . . . . . . 8
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
39 | 37, 38 | ax-r2 36 |
. . . . . . 7
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩
(((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥ )))) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
40 | 22, 39 | ax-r2 36 |
. . . . . 6
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
(a ∩ b⊥ ⊥ ))) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
41 | 15, 40 | ax-r2 36 |
. . . . 5
((a⊥ ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
(a ∩ b⊥ ⊥ )) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
42 | 8, 41 | ax-r2 36 |
. . . 4
(((a →3 b⊥ )⊥ ∩
a⊥ ) ∪ ((a →3 b⊥ )⊥ ∩
a⊥ ⊥ )) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
43 | | u3lemnona 667 |
. . . . . 6
((a →3 b⊥ )⊥ ∪
a⊥ ) = (a⊥ ∪ (a ∩ b⊥ ⊥
)) |
44 | 43 | lan 77 |
. . . . 5
((a →3 b⊥ ) ∩ ((a →3 b⊥ )⊥ ∪
a⊥ )) = ((a →3 b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ ⊥
))) |
45 | | comi31 508 |
. . . . . . . 8
a C (a →3 b⊥ ) |
46 | 45 | comcom3 454 |
. . . . . . 7
a⊥ C
(a →3 b⊥ ) |
47 | 46, 10 | fh2 470 |
. . . . . 6
((a →3 b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ ⊥ ))) =
(((a →3 b⊥ ) ∩ a⊥ ) ∪ ((a →3 b⊥ ) ∩ (a ∩ b⊥ ⊥
))) |
48 | | u3lemana 607 |
. . . . . . . 8
((a →3 b⊥ ) ∩ a⊥ ) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
49 | | anandi 114 |
. . . . . . . . 9
((a →3 b⊥ ) ∩ (a ∩ b⊥ ⊥ )) =
(((a →3 b⊥ ) ∩ a) ∩ ((a
→3 b⊥ )
∩ b⊥
⊥ )) |
50 | | u3lemaa 602 |
. . . . . . . . . . 11
((a →3 b⊥ ) ∩ a) = (a ∩
(a⊥ ∪ b⊥ )) |
51 | | u3lemanb 617 |
. . . . . . . . . . 11
((a →3 b⊥ ) ∩ b⊥ ⊥ ) = (a⊥ ∩ b⊥ ⊥
) |
52 | 50, 51 | 2an 79 |
. . . . . . . . . 10
(((a →3 b⊥ ) ∩ a) ∩ ((a
→3 b⊥ )
∩ b⊥
⊥ )) = ((a ∩ (a⊥ ∪ b⊥ )) ∩ (a⊥ ∩ b⊥ ⊥
)) |
53 | | an4 86 |
. . . . . . . . . . 11
((a ∩ (a⊥ ∪ b⊥ )) ∩ (a⊥ ∩ b⊥ ⊥ )) =
((a ∩ a⊥ ) ∩ ((a⊥ ∪ b⊥ ) ∩ b⊥ ⊥
)) |
54 | | ancom 74 |
. . . . . . . . . . . 12
((a ∩ a⊥ ) ∩ ((a⊥ ∪ b⊥ ) ∩ b⊥ ⊥ )) =
(((a⊥ ∪ b⊥ ) ∩ b⊥ ⊥ ) ∩
(a ∩ a⊥ )) |
55 | | dff 101 |
. . . . . . . . . . . . . . 15
0 = (a ∩ a⊥ ) |
56 | 55 | ax-r1 35 |
. . . . . . . . . . . . . 14
(a ∩ a⊥ ) = 0 |
57 | 56 | lan 77 |
. . . . . . . . . . . . 13
(((a⊥ ∪
b⊥ ) ∩ b⊥ ⊥ ) ∩
(a ∩ a⊥ )) = (((a⊥ ∪ b⊥ ) ∩ b⊥ ⊥ ) ∩
0) |
58 | | an0 108 |
. . . . . . . . . . . . 13
(((a⊥ ∪
b⊥ ) ∩ b⊥ ⊥ ) ∩ 0) =
0 |
59 | 57, 58 | ax-r2 36 |
. . . . . . . . . . . 12
(((a⊥ ∪
b⊥ ) ∩ b⊥ ⊥ ) ∩
(a ∩ a⊥ )) = 0 |
60 | 54, 59 | ax-r2 36 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ ((a⊥ ∪ b⊥ ) ∩ b⊥ ⊥ )) =
0 |
61 | 53, 60 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ (a⊥ ∪ b⊥ )) ∩ (a⊥ ∩ b⊥ ⊥ )) =
0 |
62 | 52, 61 | ax-r2 36 |
. . . . . . . . 9
(((a →3 b⊥ ) ∩ a) ∩ ((a
→3 b⊥ )
∩ b⊥
⊥ )) = 0 |
63 | 49, 62 | ax-r2 36 |
. . . . . . . 8
((a →3 b⊥ ) ∩ (a ∩ b⊥ ⊥ )) =
0 |
64 | 48, 63 | 2or 72 |
. . . . . . 7
(((a →3 b⊥ ) ∩ a⊥ ) ∪ ((a →3 b⊥ ) ∩ (a ∩ b⊥ ⊥ ))) =
(((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ∪
0) |
65 | | or0 102 |
. . . . . . 7
(((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ∪ 0) =
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
66 | 64, 65 | ax-r2 36 |
. . . . . 6
(((a →3 b⊥ ) ∩ a⊥ ) ∪ ((a →3 b⊥ ) ∩ (a ∩ b⊥ ⊥ ))) =
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
67 | 47, 66 | ax-r2 36 |
. . . . 5
((a →3 b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ ⊥ ))) =
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
68 | 44, 67 | ax-r2 36 |
. . . 4
((a →3 b⊥ ) ∩ ((a →3 b⊥ )⊥ ∪
a⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
69 | 42, 68 | 2or 72 |
. . 3
((((a →3 b⊥ )⊥ ∩
a⊥ ) ∪ ((a →3 b⊥ )⊥ ∩
a⊥ ⊥ ))
∪ ((a →3 b⊥ ) ∩ ((a →3 b⊥ )⊥ ∪
a⊥ ))) = (((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
))) |
70 | | comanr1 464 |
. . . . . . . . 9
a⊥ C
(a⊥ ∩ b⊥ ) |
71 | | comanr1 464 |
. . . . . . . . 9
a⊥ C
(a⊥ ∩ b⊥ ⊥
) |
72 | 70, 71 | com2or 483 |
. . . . . . . 8
a⊥ C
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
73 | 72 | comcom 453 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) C
a⊥ |
74 | 73 | comcom7 460 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) C
a |
75 | | comanr2 465 |
. . . . . . . . . . 11
b⊥ C
(a⊥ ∩ b⊥ ) |
76 | 75 | comcom3 454 |
. . . . . . . . . 10
b⊥
⊥ C (a⊥ ∩ b⊥ ) |
77 | | comanr2 465 |
. . . . . . . . . 10
b⊥
⊥ C (a⊥ ∩ b⊥ ⊥
) |
78 | 76, 77 | com2or 483 |
. . . . . . . . 9
b⊥
⊥ C ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
79 | 78 | comcom 453 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) C
b⊥
⊥ |
80 | 74, 79 | com2an 484 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) C
(a ∩ b⊥ ⊥
) |
81 | 73, 80 | com2or 483 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) C
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
82 | 81 | comcom 453 |
. . . . 5
(a⊥ ∪ (a ∩ b⊥ ⊥ )) C
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
83 | 13 | comcom 453 |
. . . . . . . 8
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) C
a |
84 | 83 | comcom2 183 |
. . . . . . 7
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) C
a⊥ |
85 | | comorr2 463 |
. . . . . . . . . . 11
b⊥ C
(a ∪ b⊥ ) |
86 | 85 | comcom3 454 |
. . . . . . . . . 10
b⊥
⊥ C (a ∪
b⊥ ) |
87 | | comorr2 463 |
. . . . . . . . . 10
b⊥
⊥ C (a ∪
b⊥ ⊥
) |
88 | 86, 87 | com2an 484 |
. . . . . . . . 9
b⊥
⊥ C ((a ∪
b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
89 | 88 | comcom 453 |
. . . . . . . 8
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) C
b⊥
⊥ |
90 | 83, 89 | com2an 484 |
. . . . . . 7
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) C
(a ∩ b⊥ ⊥
) |
91 | 84, 90 | com2or 483 |
. . . . . 6
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) C
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
92 | 91 | comcom 453 |
. . . . 5
(a⊥ ∪ (a ∩ b⊥ ⊥ )) C
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
93 | 82, 92 | fh4r 476 |
. . . 4
(((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
(((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)))) |
94 | | ax-a2 31 |
. . . . . . 7
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
(((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ∪
(a⊥ ∪ (a ∩ b⊥ ⊥
))) |
95 | | lea 160 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) ≤ a⊥ |
96 | | lea 160 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ⊥ ) ≤
a⊥ |
97 | 95, 96 | lel2or 170 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ≤
a⊥ |
98 | | leo 158 |
. . . . . . . . . 10
a⊥ ≤ (a⊥ ∪ (a ∩ b⊥ ⊥
)) |
99 | 97, 98 | letr 137 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ≤
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
100 | 99 | df-le2 131 |
. . . . . . . 8
(((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ∪
(a⊥ ∪ (a ∩ b⊥ ⊥ ))) =
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
101 | | id 59 |
. . . . . . . 8
(a⊥ ∪ (a ∩ b⊥ ⊥ )) =
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
102 | 100, 101 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ∪
(a⊥ ∪ (a ∩ b⊥ ⊥ ))) =
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
103 | 94, 102 | ax-r2 36 |
. . . . . 6
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
104 | | ax-a2 31 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) =
((a⊥ ∩ b⊥ ⊥ ) ∪
(a⊥ ∩ b⊥ )) |
105 | | anor3 90 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ⊥ ) = (a ∪ b⊥
)⊥ |
106 | | anor2 89 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) = (a ∪ b⊥ ⊥
)⊥ |
107 | 105, 106 | 2or 72 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ⊥ ) ∪
(a⊥ ∩ b⊥ )) = ((a ∪ b⊥ )⊥ ∪
(a ∪ b⊥ ⊥
)⊥ ) |
108 | | oran3 93 |
. . . . . . . . . 10
((a ∪ b⊥ )⊥ ∪
(a ∪ b⊥ ⊥
)⊥ ) = ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ |
109 | 107, 108 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ⊥ ) ∪
(a⊥ ∩ b⊥ )) = ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ |
110 | 104, 109 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) =
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ |
111 | 110 | lor 70 |
. . . . . . 7
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ ) |
112 | | df-t 41 |
. . . . . . . 8
1 = (((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ ) |
113 | 112 | ax-r1 35 |
. . . . . . 7
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ ) = 1 |
114 | 111, 113 | ax-r2 36 |
. . . . . 6
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
1 |
115 | 103, 114 | 2an 79 |
. . . . 5
(((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )))) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
1) |
116 | | an1 106 |
. . . . . 6
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩ 1) =
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
117 | | df-i1 44 |
. . . . . . . 8
(a →1 b⊥ ⊥ ) = (a⊥ ∪ (a ∩ b⊥ ⊥
)) |
118 | 117 | ax-r1 35 |
. . . . . . 7
(a⊥ ∪ (a ∩ b⊥ ⊥ )) =
(a →1 b⊥ ⊥
) |
119 | | ax-a1 30 |
. . . . . . . . 9
b = b⊥
⊥ |
120 | 119 | ax-r1 35 |
. . . . . . . 8
b⊥
⊥ = b |
121 | 120 | ud1lem0a 255 |
. . . . . . 7
(a →1 b⊥ ⊥ ) = (a →1 b) |
122 | 118, 121 | ax-r2 36 |
. . . . . 6
(a⊥ ∪ (a ∩ b⊥ ⊥ )) =
(a →1 b) |
123 | 116, 122 | ax-r2 36 |
. . . . 5
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩ 1) =
(a →1 b) |
124 | 115, 123 | ax-r2 36 |
. . . 4
(((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )))) =
(a →1 b) |
125 | 93, 124 | ax-r2 36 |
. . 3
(((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
(a →1 b) |
126 | 69, 125 | ax-r2 36 |
. 2
((((a →3 b⊥ )⊥ ∩
a⊥ ) ∪ ((a →3 b⊥ )⊥ ∩
a⊥ ⊥ ))
∪ ((a →3 b⊥ ) ∩ ((a →3 b⊥ )⊥ ∪
a⊥ ))) = (a →1 b) |
127 | 1, 126 | ax-r2 36 |
1
((a →3 b⊥ ) →3 a⊥ ) = (a →1 b) |