Proof of Theorem u3lem13b
| Step | Hyp | Ref
| Expression |
| 1 | | df-i3 46 |
. 2
((a →3 b⊥ ) →3 a⊥ ) = ((((a →3 b⊥ )⊥ ∩
a⊥ ) ∪ ((a →3 b⊥ )⊥ ∩
a⊥ ⊥ ))
∪ ((a →3 b⊥ ) ∩ ((a →3 b⊥ )⊥ ∪
a⊥ ))) |
| 2 | | u3lemnana 647 |
. . . . . 6
((a →3 b⊥ )⊥ ∩
a⊥ ) = (a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
| 3 | | ax-a1 30 |
. . . . . . . . 9
a = a⊥
⊥ |
| 4 | 3 | ax-r1 35 |
. . . . . . . 8
a⊥
⊥ = a |
| 5 | 4 | lan 77 |
. . . . . . 7
((a →3 b⊥ )⊥ ∩
a⊥ ⊥ ) =
((a →3 b⊥ )⊥ ∩
a) |
| 6 | | u3lemnaa 642 |
. . . . . . 7
((a →3 b⊥ )⊥ ∩
a) = (a
∩ b⊥
⊥ ) |
| 7 | 5, 6 | ax-r2 36 |
. . . . . 6
((a →3 b⊥ )⊥ ∩
a⊥ ⊥ ) =
(a ∩ b⊥ ⊥
) |
| 8 | 2, 7 | 2or 72 |
. . . . 5
(((a →3 b⊥ )⊥ ∩
a⊥ ) ∪ ((a →3 b⊥ )⊥ ∩
a⊥ ⊥ )) =
((a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
(a ∩ b⊥ ⊥
)) |
| 9 | | comanr1 464 |
. . . . . . . 8
a C (a ∩ b⊥ ⊥
) |
| 10 | 9 | comcom3 454 |
. . . . . . 7
a⊥ C
(a ∩ b⊥ ⊥
) |
| 11 | | comorr 184 |
. . . . . . . . 9
a C (a ∪ b⊥ ) |
| 12 | | comorr 184 |
. . . . . . . . 9
a C (a ∪ b⊥ ⊥
) |
| 13 | 11, 12 | com2an 484 |
. . . . . . . 8
a C ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
| 14 | 13 | comcom3 454 |
. . . . . . 7
a⊥ C
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
| 15 | 10, 14 | fh4r 476 |
. . . . . 6
((a⊥ ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
(a ∩ b⊥ ⊥ )) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
(a ∩ b⊥ ⊥
))) |
| 16 | | coman1 185 |
. . . . . . . . . 10
(a ∩ b⊥ ⊥ ) C
a |
| 17 | | coman2 186 |
. . . . . . . . . . 11
(a ∩ b⊥ ⊥ ) C
b⊥
⊥ |
| 18 | 17 | comcom7 460 |
. . . . . . . . . 10
(a ∩ b⊥ ⊥ ) C
b⊥ |
| 19 | 16, 18 | com2or 483 |
. . . . . . . . 9
(a ∩ b⊥ ⊥ ) C
(a ∪ b⊥ ) |
| 20 | 16, 17 | com2or 483 |
. . . . . . . . 9
(a ∩ b⊥ ⊥ ) C
(a ∪ b⊥ ⊥
) |
| 21 | 19, 20 | fh3r 475 |
. . . . . . . 8
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
(a ∩ b⊥ ⊥ )) =
(((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥
))) |
| 22 | 21 | lan 77 |
. . . . . . 7
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
(a ∩ b⊥ ⊥ ))) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
(((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥
)))) |
| 23 | | ax-a2 31 |
. . . . . . . . . . . 12
((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) =
((a ∩ b⊥ ⊥ ) ∪
(a ∪ b⊥ )) |
| 24 | | lea 160 |
. . . . . . . . . . . . . 14
(a ∩ b⊥ ⊥ ) ≤
a |
| 25 | | leo 158 |
. . . . . . . . . . . . . 14
a ≤ (a ∪ b⊥ ) |
| 26 | 24, 25 | letr 137 |
. . . . . . . . . . . . 13
(a ∩ b⊥ ⊥ ) ≤
(a ∪ b⊥ ) |
| 27 | 26 | df-le2 131 |
. . . . . . . . . . . 12
((a ∩ b⊥ ⊥ ) ∪
(a ∪ b⊥ )) = (a ∪ b⊥ ) |
| 28 | 23, 27 | ax-r2 36 |
. . . . . . . . . . 11
((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) =
(a ∪ b⊥ ) |
| 29 | | ax-a2 31 |
. . . . . . . . . . . 12
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥ )) =
((a ∩ b⊥ ⊥ ) ∪
(a ∪ b⊥ ⊥
)) |
| 30 | | leo 158 |
. . . . . . . . . . . . . 14
a ≤ (a ∪ b⊥ ⊥
) |
| 31 | 24, 30 | letr 137 |
. . . . . . . . . . . . 13
(a ∩ b⊥ ⊥ ) ≤
(a ∪ b⊥ ⊥
) |
| 32 | 31 | df-le2 131 |
. . . . . . . . . . . 12
((a ∩ b⊥ ⊥ ) ∪
(a ∪ b⊥ ⊥ )) =
(a ∪ b⊥ ⊥
) |
| 33 | 29, 32 | ax-r2 36 |
. . . . . . . . . . 11
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥ )) =
(a ∪ b⊥ ⊥
) |
| 34 | 28, 33 | 2an 79 |
. . . . . . . . . 10
(((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥ ))) =
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
| 35 | | id 59 |
. . . . . . . . . 10
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) =
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
| 36 | 34, 35 | ax-r2 36 |
. . . . . . . . 9
(((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥ ))) =
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
| 37 | 36 | lan 77 |
. . . . . . . 8
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩
(((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥ )))) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
| 38 | | id 59 |
. . . . . . . 8
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
| 39 | 37, 38 | ax-r2 36 |
. . . . . . 7
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩
(((a ∪ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ⊥ ) ∪
(a ∩ b⊥ ⊥ )))) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
| 40 | 22, 39 | ax-r2 36 |
. . . . . 6
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
(a ∩ b⊥ ⊥ ))) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
| 41 | 15, 40 | ax-r2 36 |
. . . . 5
((a⊥ ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
(a ∩ b⊥ ⊥ )) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
| 42 | 8, 41 | ax-r2 36 |
. . . 4
(((a →3 b⊥ )⊥ ∩
a⊥ ) ∪ ((a →3 b⊥ )⊥ ∩
a⊥ ⊥ )) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))) |
| 43 | | u3lemnona 667 |
. . . . . 6
((a →3 b⊥ )⊥ ∪
a⊥ ) = (a⊥ ∪ (a ∩ b⊥ ⊥
)) |
| 44 | 43 | lan 77 |
. . . . 5
((a →3 b⊥ ) ∩ ((a →3 b⊥ )⊥ ∪
a⊥ )) = ((a →3 b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ ⊥
))) |
| 45 | | comi31 508 |
. . . . . . . 8
a C (a →3 b⊥ ) |
| 46 | 45 | comcom3 454 |
. . . . . . 7
a⊥ C
(a →3 b⊥ ) |
| 47 | 46, 10 | fh2 470 |
. . . . . 6
((a →3 b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ ⊥ ))) =
(((a →3 b⊥ ) ∩ a⊥ ) ∪ ((a →3 b⊥ ) ∩ (a ∩ b⊥ ⊥
))) |
| 48 | | u3lemana 607 |
. . . . . . . 8
((a →3 b⊥ ) ∩ a⊥ ) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
| 49 | | anandi 114 |
. . . . . . . . 9
((a →3 b⊥ ) ∩ (a ∩ b⊥ ⊥ )) =
(((a →3 b⊥ ) ∩ a) ∩ ((a
→3 b⊥ )
∩ b⊥
⊥ )) |
| 50 | | u3lemaa 602 |
. . . . . . . . . . 11
((a →3 b⊥ ) ∩ a) = (a ∩
(a⊥ ∪ b⊥ )) |
| 51 | | u3lemanb 617 |
. . . . . . . . . . 11
((a →3 b⊥ ) ∩ b⊥ ⊥ ) = (a⊥ ∩ b⊥ ⊥
) |
| 52 | 50, 51 | 2an 79 |
. . . . . . . . . 10
(((a →3 b⊥ ) ∩ a) ∩ ((a
→3 b⊥ )
∩ b⊥
⊥ )) = ((a ∩ (a⊥ ∪ b⊥ )) ∩ (a⊥ ∩ b⊥ ⊥
)) |
| 53 | | an4 86 |
. . . . . . . . . . 11
((a ∩ (a⊥ ∪ b⊥ )) ∩ (a⊥ ∩ b⊥ ⊥ )) =
((a ∩ a⊥ ) ∩ ((a⊥ ∪ b⊥ ) ∩ b⊥ ⊥
)) |
| 54 | | ancom 74 |
. . . . . . . . . . . 12
((a ∩ a⊥ ) ∩ ((a⊥ ∪ b⊥ ) ∩ b⊥ ⊥ )) =
(((a⊥ ∪ b⊥ ) ∩ b⊥ ⊥ ) ∩
(a ∩ a⊥ )) |
| 55 | | dff 101 |
. . . . . . . . . . . . . . 15
0 = (a ∩ a⊥ ) |
| 56 | 55 | ax-r1 35 |
. . . . . . . . . . . . . 14
(a ∩ a⊥ ) = 0 |
| 57 | 56 | lan 77 |
. . . . . . . . . . . . 13
(((a⊥ ∪
b⊥ ) ∩ b⊥ ⊥ ) ∩
(a ∩ a⊥ )) = (((a⊥ ∪ b⊥ ) ∩ b⊥ ⊥ ) ∩
0) |
| 58 | | an0 108 |
. . . . . . . . . . . . 13
(((a⊥ ∪
b⊥ ) ∩ b⊥ ⊥ ) ∩ 0) =
0 |
| 59 | 57, 58 | ax-r2 36 |
. . . . . . . . . . . 12
(((a⊥ ∪
b⊥ ) ∩ b⊥ ⊥ ) ∩
(a ∩ a⊥ )) = 0 |
| 60 | 54, 59 | ax-r2 36 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ ((a⊥ ∪ b⊥ ) ∩ b⊥ ⊥ )) =
0 |
| 61 | 53, 60 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ (a⊥ ∪ b⊥ )) ∩ (a⊥ ∩ b⊥ ⊥ )) =
0 |
| 62 | 52, 61 | ax-r2 36 |
. . . . . . . . 9
(((a →3 b⊥ ) ∩ a) ∩ ((a
→3 b⊥ )
∩ b⊥
⊥ )) = 0 |
| 63 | 49, 62 | ax-r2 36 |
. . . . . . . 8
((a →3 b⊥ ) ∩ (a ∩ b⊥ ⊥ )) =
0 |
| 64 | 48, 63 | 2or 72 |
. . . . . . 7
(((a →3 b⊥ ) ∩ a⊥ ) ∪ ((a →3 b⊥ ) ∩ (a ∩ b⊥ ⊥ ))) =
(((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ∪
0) |
| 65 | | or0 102 |
. . . . . . 7
(((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ∪ 0) =
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
| 66 | 64, 65 | ax-r2 36 |
. . . . . 6
(((a →3 b⊥ ) ∩ a⊥ ) ∪ ((a →3 b⊥ ) ∩ (a ∩ b⊥ ⊥ ))) =
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
| 67 | 47, 66 | ax-r2 36 |
. . . . 5
((a →3 b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ ⊥ ))) =
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
| 68 | 44, 67 | ax-r2 36 |
. . . 4
((a →3 b⊥ ) ∩ ((a →3 b⊥ )⊥ ∪
a⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
| 69 | 42, 68 | 2or 72 |
. . 3
((((a →3 b⊥ )⊥ ∩
a⊥ ) ∪ ((a →3 b⊥ )⊥ ∩
a⊥ ⊥ ))
∪ ((a →3 b⊥ ) ∩ ((a →3 b⊥ )⊥ ∪
a⊥ ))) = (((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
))) |
| 70 | | comanr1 464 |
. . . . . . . . 9
a⊥ C
(a⊥ ∩ b⊥ ) |
| 71 | | comanr1 464 |
. . . . . . . . 9
a⊥ C
(a⊥ ∩ b⊥ ⊥
) |
| 72 | 70, 71 | com2or 483 |
. . . . . . . 8
a⊥ C
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
| 73 | 72 | comcom 453 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) C
a⊥ |
| 74 | 73 | comcom7 460 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) C
a |
| 75 | | comanr2 465 |
. . . . . . . . . . 11
b⊥ C
(a⊥ ∩ b⊥ ) |
| 76 | 75 | comcom3 454 |
. . . . . . . . . 10
b⊥
⊥ C (a⊥ ∩ b⊥ ) |
| 77 | | comanr2 465 |
. . . . . . . . . 10
b⊥
⊥ C (a⊥ ∩ b⊥ ⊥
) |
| 78 | 76, 77 | com2or 483 |
. . . . . . . . 9
b⊥
⊥ C ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
| 79 | 78 | comcom 453 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) C
b⊥
⊥ |
| 80 | 74, 79 | com2an 484 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) C
(a ∩ b⊥ ⊥
) |
| 81 | 73, 80 | com2or 483 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) C
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
| 82 | 81 | comcom 453 |
. . . . 5
(a⊥ ∪ (a ∩ b⊥ ⊥ )) C
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
| 83 | 13 | comcom 453 |
. . . . . . . 8
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) C
a |
| 84 | 83 | comcom2 183 |
. . . . . . 7
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) C
a⊥ |
| 85 | | comorr2 463 |
. . . . . . . . . . 11
b⊥ C
(a ∪ b⊥ ) |
| 86 | 85 | comcom3 454 |
. . . . . . . . . 10
b⊥
⊥ C (a ∪
b⊥ ) |
| 87 | | comorr2 463 |
. . . . . . . . . 10
b⊥
⊥ C (a ∪
b⊥ ⊥
) |
| 88 | 86, 87 | com2an 484 |
. . . . . . . . 9
b⊥
⊥ C ((a ∪
b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
| 89 | 88 | comcom 453 |
. . . . . . . 8
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) C
b⊥
⊥ |
| 90 | 83, 89 | com2an 484 |
. . . . . . 7
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) C
(a ∩ b⊥ ⊥
) |
| 91 | 84, 90 | com2or 483 |
. . . . . 6
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) C
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
| 92 | 91 | comcom 453 |
. . . . 5
(a⊥ ∪ (a ∩ b⊥ ⊥ )) C
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
)) |
| 93 | 82, 92 | fh4r 476 |
. . . 4
(((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
(((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)))) |
| 94 | | ax-a2 31 |
. . . . . . 7
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
(((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ∪
(a⊥ ∪ (a ∩ b⊥ ⊥
))) |
| 95 | | lea 160 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) ≤ a⊥ |
| 96 | | lea 160 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ⊥ ) ≤
a⊥ |
| 97 | 95, 96 | lel2or 170 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ≤
a⊥ |
| 98 | | leo 158 |
. . . . . . . . . 10
a⊥ ≤ (a⊥ ∪ (a ∩ b⊥ ⊥
)) |
| 99 | 97, 98 | letr 137 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ≤
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
| 100 | 99 | df-le2 131 |
. . . . . . . 8
(((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ∪
(a⊥ ∪ (a ∩ b⊥ ⊥ ))) =
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
| 101 | | id 59 |
. . . . . . . 8
(a⊥ ∪ (a ∩ b⊥ ⊥ )) =
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
| 102 | 100, 101 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ∪
(a⊥ ∪ (a ∩ b⊥ ⊥ ))) =
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
| 103 | 94, 102 | ax-r2 36 |
. . . . . 6
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
| 104 | | ax-a2 31 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) =
((a⊥ ∩ b⊥ ⊥ ) ∪
(a⊥ ∩ b⊥ )) |
| 105 | | anor3 90 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ⊥ ) = (a ∪ b⊥
)⊥ |
| 106 | | anor2 89 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) = (a ∪ b⊥ ⊥
)⊥ |
| 107 | 105, 106 | 2or 72 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ⊥ ) ∪
(a⊥ ∩ b⊥ )) = ((a ∪ b⊥ )⊥ ∪
(a ∪ b⊥ ⊥
)⊥ ) |
| 108 | | oran3 93 |
. . . . . . . . . 10
((a ∪ b⊥ )⊥ ∪
(a ∪ b⊥ ⊥
)⊥ ) = ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ |
| 109 | 107, 108 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ⊥ ) ∪
(a⊥ ∩ b⊥ )) = ((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ |
| 110 | 104, 109 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) =
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ |
| 111 | 110 | lor 70 |
. . . . . . 7
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ ) |
| 112 | | df-t 41 |
. . . . . . . 8
1 = (((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ ) |
| 113 | 112 | ax-r1 35 |
. . . . . . 7
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥
))⊥ ) = 1 |
| 114 | 111, 113 | ax-r2 36 |
. . . . . 6
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
1 |
| 115 | 103, 114 | 2an 79 |
. . . . 5
(((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )))) =
((a⊥ ∪ (a ∩ b⊥ ⊥ )) ∩
1) |
| 116 | | an1 106 |
. . . . . 6
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩ 1) =
(a⊥ ∪ (a ∩ b⊥ ⊥
)) |
| 117 | | df-i1 44 |
. . . . . . . 8
(a →1 b⊥ ⊥ ) = (a⊥ ∪ (a ∩ b⊥ ⊥
)) |
| 118 | 117 | ax-r1 35 |
. . . . . . 7
(a⊥ ∪ (a ∩ b⊥ ⊥ )) =
(a →1 b⊥ ⊥
) |
| 119 | | ax-a1 30 |
. . . . . . . . 9
b = b⊥
⊥ |
| 120 | 119 | ax-r1 35 |
. . . . . . . 8
b⊥
⊥ = b |
| 121 | 120 | ud1lem0a 255 |
. . . . . . 7
(a →1 b⊥ ⊥ ) = (a →1 b) |
| 122 | 118, 121 | ax-r2 36 |
. . . . . 6
(a⊥ ∪ (a ∩ b⊥ ⊥ )) =
(a →1 b) |
| 123 | 116, 122 | ax-r2 36 |
. . . . 5
((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩ 1) =
(a →1 b) |
| 124 | 115, 123 | ax-r2 36 |
. . . 4
(((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) ∩
(((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ )) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )))) =
(a →1 b) |
| 125 | 93, 124 | ax-r2 36 |
. . 3
(((a⊥ ∪
(a ∩ b⊥ ⊥ )) ∩
((a ∪ b⊥ ) ∩ (a ∪ b⊥ ⊥ ))) ∪
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))) =
(a →1 b) |
| 126 | 69, 125 | ax-r2 36 |
. 2
((((a →3 b⊥ )⊥ ∩
a⊥ ) ∪ ((a →3 b⊥ )⊥ ∩
a⊥ ⊥ ))
∪ ((a →3 b⊥ ) ∩ ((a →3 b⊥ )⊥ ∪
a⊥ ))) = (a →1 b) |
| 127 | 1, 126 | ax-r2 36 |
1
((a →3 b⊥ ) →3 a⊥ ) = (a →1 b) |