Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u3lemnob | GIF version |
Description: Lemma for Kalmbach implication study. (Contributed by NM, 16-Dec-1997.) |
Ref | Expression |
---|---|
u3lemnob | ((a →3 b)⊥ ∪ b) = (a ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | u3lemanb 617 | . . 3 ((a →3 b) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) | |
2 | anor1 88 | . . 3 ((a →3 b) ∩ b⊥ ) = ((a →3 b)⊥ ∪ b)⊥ | |
3 | anor3 90 | . . 3 (a⊥ ∩ b⊥ ) = (a ∪ b)⊥ | |
4 | 1, 2, 3 | 3tr2 64 | . 2 ((a →3 b)⊥ ∪ b)⊥ = (a ∪ b)⊥ |
5 | 4 | con1 66 | 1 ((a →3 b)⊥ ∪ b) = (a ∪ b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |