Proof of Theorem u3lemanb
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. . 3
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
2 | 1 | ran 78 |
. 2
((a →3 b) ∩ b⊥ ) = ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ b⊥ ) |
3 | | comanr2 465 |
. . . . . . 7
b C (a⊥ ∩ b) |
4 | 3 | comcom3 454 |
. . . . . 6
b⊥ C
(a⊥ ∩ b) |
5 | | comanr2 465 |
. . . . . 6
b⊥ C
(a⊥ ∩ b⊥ ) |
6 | 4, 5 | com2or 483 |
. . . . 5
b⊥ C
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
7 | 6 | comcom 453 |
. . . 4
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) C b⊥ |
8 | | coman1 185 |
. . . . . . . . 9
(a⊥ ∩ b) C a⊥ |
9 | 8 | comcom7 460 |
. . . . . . . 8
(a⊥ ∩ b) C a |
10 | | coman2 186 |
. . . . . . . . 9
(a⊥ ∩ b) C b |
11 | 8, 10 | com2or 483 |
. . . . . . . 8
(a⊥ ∩ b) C (a⊥ ∪ b) |
12 | 9, 11 | com2an 484 |
. . . . . . 7
(a⊥ ∩ b) C (a
∩ (a⊥ ∪ b)) |
13 | 12 | comcom 453 |
. . . . . 6
(a ∩ (a⊥ ∪ b)) C (a⊥ ∩ b) |
14 | | coman1 185 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) C a⊥ |
15 | 14 | comcom7 460 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) C a |
16 | | coman2 186 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ ) C b⊥ |
17 | 16 | comcom7 460 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) C b |
18 | 14, 17 | com2or 483 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) C (a⊥ ∪ b) |
19 | 15, 18 | com2an 484 |
. . . . . . 7
(a⊥ ∩ b⊥ ) C (a ∩ (a⊥ ∪ b)) |
20 | 19 | comcom 453 |
. . . . . 6
(a ∩ (a⊥ ∪ b)) C (a⊥ ∩ b⊥ ) |
21 | 13, 20 | com2or 483 |
. . . . 5
(a ∩ (a⊥ ∪ b)) C ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
22 | 21 | comcom 453 |
. . . 4
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) C (a ∩ (a⊥ ∪ b)) |
23 | 7, 22 | fh2r 474 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ b⊥ ) = ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) ∪ ((a ∩ (a⊥ ∪ b)) ∩ b⊥ )) |
24 | 10 | comcom2 183 |
. . . . . . 7
(a⊥ ∩ b) C b⊥ |
25 | 8, 24 | com2an 484 |
. . . . . . 7
(a⊥ ∩ b) C (a⊥ ∩ b⊥ ) |
26 | 24, 25 | fh2r 474 |
. . . . . 6
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) = (((a⊥ ∩ b) ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∩ b⊥ )) |
27 | | ax-a2 31 |
. . . . . . 7
(((a⊥ ∩
b) ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∩ b⊥ )) = (((a⊥ ∩ b⊥ ) ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∩ b⊥ )) |
28 | | anass 76 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ b⊥ ) = (a⊥ ∩ (b⊥ ∩ b⊥ )) |
29 | | anidm 111 |
. . . . . . . . . . 11
(b⊥ ∩ b⊥ ) = b⊥ |
30 | 29 | lan 77 |
. . . . . . . . . 10
(a⊥ ∩ (b⊥ ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
31 | 28, 30 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
32 | | anass 76 |
. . . . . . . . . 10
((a⊥ ∩ b) ∩ b⊥ ) = (a⊥ ∩ (b ∩ b⊥ )) |
33 | | dff 101 |
. . . . . . . . . . . . 13
0 = (b ∩ b⊥ ) |
34 | 33 | lan 77 |
. . . . . . . . . . . 12
(a⊥ ∩ 0) =
(a⊥ ∩ (b ∩ b⊥ )) |
35 | 34 | ax-r1 35 |
. . . . . . . . . . 11
(a⊥ ∩ (b ∩ b⊥ )) = (a⊥ ∩ 0) |
36 | | an0 108 |
. . . . . . . . . . 11
(a⊥ ∩ 0) =
0 |
37 | 35, 36 | ax-r2 36 |
. . . . . . . . . 10
(a⊥ ∩ (b ∩ b⊥ )) = 0 |
38 | 32, 37 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ b) ∩ b⊥ ) = 0 |
39 | 31, 38 | 2or 72 |
. . . . . . . 8
(((a⊥ ∩
b⊥ ) ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ 0) |
40 | | or0 102 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∪ 0) = (a⊥ ∩ b⊥ ) |
41 | 39, 40 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∩
b⊥ ) ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
42 | 27, 41 | ax-r2 36 |
. . . . . 6
(((a⊥ ∩
b) ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
43 | 26, 42 | ax-r2 36 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
44 | | an32 83 |
. . . . . 6
((a ∩ (a⊥ ∪ b)) ∩ b⊥ ) = ((a ∩ b⊥ ) ∩ (a⊥ ∪ b)) |
45 | | ancom 74 |
. . . . . . 7
((a ∩ b⊥ ) ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ (a
∩ b⊥
)) |
46 | | anor1 88 |
. . . . . . . . 9
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
47 | 46 | lan 77 |
. . . . . . . 8
((a⊥ ∪ b) ∩ (a
∩ b⊥ )) = ((a⊥ ∪ b) ∩ (a⊥ ∪ b)⊥ ) |
48 | | dff 101 |
. . . . . . . . 9
0 = ((a⊥ ∪
b) ∩ (a⊥ ∪ b)⊥ ) |
49 | 48 | ax-r1 35 |
. . . . . . . 8
((a⊥ ∪ b) ∩ (a⊥ ∪ b)⊥ ) = 0 |
50 | 47, 49 | ax-r2 36 |
. . . . . . 7
((a⊥ ∪ b) ∩ (a
∩ b⊥ )) =
0 |
51 | 45, 50 | ax-r2 36 |
. . . . . 6
((a ∩ b⊥ ) ∩ (a⊥ ∪ b)) = 0 |
52 | 44, 51 | ax-r2 36 |
. . . . 5
((a ∩ (a⊥ ∪ b)) ∩ b⊥ ) = 0 |
53 | 43, 52 | 2or 72 |
. . . 4
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) ∪ ((a ∩ (a⊥ ∪ b)) ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ 0) |
54 | 53, 40 | ax-r2 36 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) ∪ ((a ∩ (a⊥ ∪ b)) ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
55 | 23, 54 | ax-r2 36 |
. 2
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
56 | 2, 55 | ax-r2 36 |
1
((a →3 b) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |