Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u4lemnob | GIF version |
Description: Lemma for non-tollens implication study. (Contributed by NM, 16-Dec-1997.) |
Ref | Expression |
---|---|
u4lemnob | ((a →4 b)⊥ ∪ b) = ((a ∩ b⊥ ) ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | u4lemanb 618 | . . . 4 ((a →4 b) ∩ b⊥ ) = ((a⊥ ∪ b) ∩ b⊥ ) | |
2 | oran2 92 | . . . . 5 (a⊥ ∪ b) = (a ∩ b⊥ )⊥ | |
3 | 2 | ran 78 | . . . 4 ((a⊥ ∪ b) ∩ b⊥ ) = ((a ∩ b⊥ )⊥ ∩ b⊥ ) |
4 | 1, 3 | ax-r2 36 | . . 3 ((a →4 b) ∩ b⊥ ) = ((a ∩ b⊥ )⊥ ∩ b⊥ ) |
5 | anor1 88 | . . 3 ((a →4 b) ∩ b⊥ ) = ((a →4 b)⊥ ∪ b)⊥ | |
6 | anor3 90 | . . 3 ((a ∩ b⊥ )⊥ ∩ b⊥ ) = ((a ∩ b⊥ ) ∪ b)⊥ | |
7 | 4, 5, 6 | 3tr2 64 | . 2 ((a →4 b)⊥ ∪ b)⊥ = ((a ∩ b⊥ ) ∪ b)⊥ |
8 | 7 | con1 66 | 1 ((a →4 b)⊥ ∪ b) = ((a ∩ b⊥ ) ∪ b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →4 wi4 15 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |