Proof of Theorem u5lembi
| Step | Hyp | Ref
| Expression |
| 1 | | u5lemc1b 685 |
. . . . . . 7
b C (a →5 b) |
| 2 | 1 | comcom 453 |
. . . . . 6
(a →5 b) C b |
| 3 | | u5lemc1 684 |
. . . . . . 7
a C (a →5 b) |
| 4 | 3 | comcom 453 |
. . . . . 6
(a →5 b) C a |
| 5 | 2, 4 | com2an 484 |
. . . . 5
(a →5 b) C (b
∩ a) |
| 6 | 2 | comcom2 183 |
. . . . . 6
(a →5 b) C b⊥ |
| 7 | 6, 4 | com2an 484 |
. . . . 5
(a →5 b) C (b⊥ ∩ a) |
| 8 | 5, 7 | com2or 483 |
. . . 4
(a →5 b) C ((b
∩ a) ∪ (b⊥ ∩ a)) |
| 9 | 4 | comcom2 183 |
. . . . 5
(a →5 b) C a⊥ |
| 10 | 6, 9 | com2an 484 |
. . . 4
(a →5 b) C (b⊥ ∩ a⊥ ) |
| 11 | 8, 10 | fh1 469 |
. . 3
((a →5 b) ∩ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ (b⊥ ∩ a⊥ ))) = (((a →5 b) ∩ ((b
∩ a) ∪ (b⊥ ∩ a))) ∪ ((a
→5 b) ∩ (b⊥ ∩ a⊥ ))) |
| 12 | 5, 7 | fh1 469 |
. . . . . 6
((a →5 b) ∩ ((b
∩ a) ∪ (b⊥ ∩ a))) = (((a
→5 b) ∩ (b ∩ a))
∪ ((a →5 b) ∩ (b⊥ ∩ a))) |
| 13 | | ancom 74 |
. . . . . . . . 9
((a →5 b) ∩ (b
∩ a)) = ((b ∩ a) ∩
(a →5 b)) |
| 14 | | ancom 74 |
. . . . . . . . . . 11
(b ∩ a) = (a ∩
b) |
| 15 | | df-i5 48 |
. . . . . . . . . . . 12
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
| 16 | | ax-a3 32 |
. . . . . . . . . . . 12
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = ((a ∩ b) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 17 | 15, 16 | ax-r2 36 |
. . . . . . . . . . 11
(a →5 b) = ((a ∩
b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 18 | 14, 17 | 2an 79 |
. . . . . . . . . 10
((b ∩ a) ∩ (a
→5 b)) = ((a ∩ b) ∩
((a ∩ b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) |
| 19 | | anabs 121 |
. . . . . . . . . 10
((a ∩ b) ∩ ((a
∩ b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) = (a ∩ b) |
| 20 | 18, 19 | ax-r2 36 |
. . . . . . . . 9
((b ∩ a) ∩ (a
→5 b)) = (a ∩ b) |
| 21 | 13, 20 | ax-r2 36 |
. . . . . . . 8
((a →5 b) ∩ (b
∩ a)) = (a ∩ b) |
| 22 | | anandi 114 |
. . . . . . . . 9
((a →5 b) ∩ (b⊥ ∩ a)) = (((a
→5 b) ∩ b⊥ ) ∩ ((a →5 b) ∩ a)) |
| 23 | | u5lemanb 619 |
. . . . . . . . . . 11
((a →5 b) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
| 24 | | u5lemaa 604 |
. . . . . . . . . . 11
((a →5 b) ∩ a) =
(a ∩ b) |
| 25 | 23, 24 | 2an 79 |
. . . . . . . . . 10
(((a →5 b) ∩ b⊥ ) ∩ ((a →5 b) ∩ a)) =
((a⊥ ∩ b⊥ ) ∩ (a ∩ b)) |
| 26 | | ancom 74 |
. . . . . . . . . . 11
((a⊥ ∩ b⊥ ) ∩ (a ∩ b)) =
((a ∩ b) ∩ (a⊥ ∩ b⊥ )) |
| 27 | | an4 86 |
. . . . . . . . . . . 12
((a ∩ b) ∩ (a⊥ ∩ b⊥ )) = ((a ∩ a⊥ ) ∩ (b ∩ b⊥ )) |
| 28 | | dff 101 |
. . . . . . . . . . . . . . 15
0 = (b ∩ b⊥ ) |
| 29 | 28 | ax-r1 35 |
. . . . . . . . . . . . . 14
(b ∩ b⊥ ) = 0 |
| 30 | 29 | lan 77 |
. . . . . . . . . . . . 13
((a ∩ a⊥ ) ∩ (b ∩ b⊥ )) = ((a ∩ a⊥ ) ∩ 0) |
| 31 | | an0 108 |
. . . . . . . . . . . . 13
((a ∩ a⊥ ) ∩ 0) = 0 |
| 32 | 30, 31 | ax-r2 36 |
. . . . . . . . . . . 12
((a ∩ a⊥ ) ∩ (b ∩ b⊥ )) = 0 |
| 33 | 27, 32 | ax-r2 36 |
. . . . . . . . . . 11
((a ∩ b) ∩ (a⊥ ∩ b⊥ )) = 0 |
| 34 | 26, 33 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ (a ∩ b)) =
0 |
| 35 | 25, 34 | ax-r2 36 |
. . . . . . . . 9
(((a →5 b) ∩ b⊥ ) ∩ ((a →5 b) ∩ a)) =
0 |
| 36 | 22, 35 | ax-r2 36 |
. . . . . . . 8
((a →5 b) ∩ (b⊥ ∩ a)) = 0 |
| 37 | 21, 36 | 2or 72 |
. . . . . . 7
(((a →5 b) ∩ (b
∩ a)) ∪ ((a →5 b) ∩ (b⊥ ∩ a))) = ((a ∩
b) ∪ 0) |
| 38 | | or0 102 |
. . . . . . 7
((a ∩ b) ∪ 0) = (a
∩ b) |
| 39 | 37, 38 | ax-r2 36 |
. . . . . 6
(((a →5 b) ∩ (b
∩ a)) ∪ ((a →5 b) ∩ (b⊥ ∩ a))) = (a ∩
b) |
| 40 | 12, 39 | ax-r2 36 |
. . . . 5
((a →5 b) ∩ ((b
∩ a) ∪ (b⊥ ∩ a))) = (a ∩
b) |
| 41 | | ancom 74 |
. . . . . 6
((a →5 b) ∩ (b⊥ ∩ a⊥ )) = ((b⊥ ∩ a⊥ ) ∩ (a →5 b)) |
| 42 | | ancom 74 |
. . . . . . . 8
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
| 43 | | ax-a2 31 |
. . . . . . . . 9
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
| 44 | 15, 43 | ax-r2 36 |
. . . . . . . 8
(a →5 b) = ((a⊥ ∩ b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
| 45 | 42, 44 | 2an 79 |
. . . . . . 7
((b⊥ ∩ a⊥ ) ∩ (a →5 b)) = ((a⊥ ∩ b⊥ ) ∩ ((a⊥ ∩ b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b)))) |
| 46 | | anabs 121 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ ((a⊥ ∩ b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b)))) = (a⊥ ∩ b⊥ ) |
| 47 | 45, 46 | ax-r2 36 |
. . . . . 6
((b⊥ ∩ a⊥ ) ∩ (a →5 b)) = (a⊥ ∩ b⊥ ) |
| 48 | 41, 47 | ax-r2 36 |
. . . . 5
((a →5 b) ∩ (b⊥ ∩ a⊥ )) = (a⊥ ∩ b⊥ ) |
| 49 | 40, 48 | 2or 72 |
. . . 4
(((a →5 b) ∩ ((b
∩ a) ∪ (b⊥ ∩ a))) ∪ ((a
→5 b) ∩ (b⊥ ∩ a⊥ ))) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
| 50 | | id 59 |
. . . 4
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
| 51 | 49, 50 | ax-r2 36 |
. . 3
(((a →5 b) ∩ ((b
∩ a) ∪ (b⊥ ∩ a))) ∪ ((a
→5 b) ∩ (b⊥ ∩ a⊥ ))) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
| 52 | 11, 51 | ax-r2 36 |
. 2
((a →5 b) ∩ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ (b⊥ ∩ a⊥ ))) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
| 53 | | df-i5 48 |
. . 3
(b →5 a) = (((b ∩
a) ∪ (b⊥ ∩ a)) ∪ (b⊥ ∩ a⊥ )) |
| 54 | 53 | lan 77 |
. 2
((a →5 b) ∩ (b
→5 a)) = ((a →5 b) ∩ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ (b⊥ ∩ a⊥ ))) |
| 55 | | dfb 94 |
. 2
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
| 56 | 52, 54, 55 | 3tr1 63 |
1
((a →5 b) ∩ (b
→5 a)) = (a ≡ b) |