Proof of Theorem ud4lem1a
Step | Hyp | Ref
| Expression |
1 | | df-i4 47 |
. . 3
(a →4 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
2 | | df-i4 47 |
. . 3
(b →4 a) = (((b ∩
a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) |
3 | 1, 2 | 2an 79 |
. 2
((a →4 b) ∩ (b
→4 a)) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∩ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) |
4 | | coman2 186 |
. . . . . . . . . 10
(a ∩ b) C b |
5 | 4 | comcom 453 |
. . . . . . . . 9
b C (a ∩ b) |
6 | | coman2 186 |
. . . . . . . . . 10
(a⊥ ∩ b) C b |
7 | 6 | comcom 453 |
. . . . . . . . 9
b C (a⊥ ∩ b) |
8 | 5, 7 | com2or 483 |
. . . . . . . 8
b C ((a ∩ b) ∪
(a⊥ ∩ b)) |
9 | 8 | comcom 453 |
. . . . . . 7
((a ∩ b) ∪ (a⊥ ∩ b)) C b |
10 | | coman1 185 |
. . . . . . . . . 10
(a ∩ b) C a |
11 | 10 | comcom 453 |
. . . . . . . . 9
a C (a ∩ b) |
12 | | coman1 185 |
. . . . . . . . . . . 12
(a⊥ ∩ b) C a⊥ |
13 | 12 | comcom 453 |
. . . . . . . . . . 11
a⊥ C
(a⊥ ∩ b) |
14 | 13 | comcom2 183 |
. . . . . . . . . 10
a⊥ C
(a⊥ ∩ b)⊥ |
15 | 14 | comcom5 458 |
. . . . . . . . 9
a C (a⊥ ∩ b) |
16 | 11, 15 | com2or 483 |
. . . . . . . 8
a C ((a ∩ b) ∪
(a⊥ ∩ b)) |
17 | 16 | comcom 453 |
. . . . . . 7
((a ∩ b) ∪ (a⊥ ∩ b)) C a |
18 | 9, 17 | com2an 484 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b)) C (b
∩ a) |
19 | 5 | comcom3 454 |
. . . . . . . . 9
b⊥ C
(a ∩ b) |
20 | 7 | comcom3 454 |
. . . . . . . . 9
b⊥ C
(a⊥ ∩ b) |
21 | 19, 20 | com2or 483 |
. . . . . . . 8
b⊥ C
((a ∩ b) ∪ (a⊥ ∩ b)) |
22 | 21 | comcom 453 |
. . . . . . 7
((a ∩ b) ∪ (a⊥ ∩ b)) C b⊥ |
23 | 22, 17 | com2an 484 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b)) C (b⊥ ∩ a) |
24 | 18, 23 | com2or 483 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b)) C ((b
∩ a) ∪ (b⊥ ∩ a)) |
25 | 22, 17 | com2or 483 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b)) C (b⊥ ∪ a) |
26 | 11 | comcom3 454 |
. . . . . . . 8
a⊥ C
(a ∩ b) |
27 | 26, 13 | com2or 483 |
. . . . . . 7
a⊥ C
((a ∩ b) ∪ (a⊥ ∩ b)) |
28 | 27 | comcom 453 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b)) C a⊥ |
29 | 25, 28 | com2an 484 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b)) C ((b⊥ ∪ a) ∩ a⊥ ) |
30 | 24, 29 | com2or 483 |
. . . 4
((a ∩ b) ∪ (a⊥ ∩ b)) C (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) |
31 | 28, 9 | com2or 483 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b)) C (a⊥ ∪ b) |
32 | 9 | comcom2 183 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b)) C b⊥ |
33 | 31, 32 | com2an 484 |
. . . 4
((a ∩ b) ∪ (a⊥ ∩ b)) C ((a⊥ ∪ b) ∩ b⊥ ) |
34 | 30, 33 | fh2r 474 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∩ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∩ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) ∪ (((a⊥ ∪ b) ∩ b⊥ ) ∩ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )))) |
35 | | ancom 74 |
. . . . . . . . 9
(b ∩ a) = (a ∩
b) |
36 | | ancom 74 |
. . . . . . . . 9
(b⊥ ∩ a) = (a ∩
b⊥ ) |
37 | 35, 36 | 2or 72 |
. . . . . . . 8
((b ∩ a) ∪ (b⊥ ∩ a)) = ((a ∩
b) ∪ (a ∩ b⊥ )) |
38 | | ax-a2 31 |
. . . . . . . . 9
(b⊥ ∪ a) = (a ∪
b⊥ ) |
39 | 38 | ran 78 |
. . . . . . . 8
((b⊥ ∪ a) ∩ a⊥ ) = ((a ∪ b⊥ ) ∩ a⊥ ) |
40 | 37, 39 | 2or 72 |
. . . . . . 7
(((b ∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) = (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ ((a ∪ b⊥ ) ∩ a⊥ )) |
41 | 40 | lan 77 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ (((a
∩ b) ∪ (a ∩ b⊥ )) ∪ ((a ∪ b⊥ ) ∩ a⊥ ))) |
42 | 17, 9 | com2an 484 |
. . . . . . . . 9
((a ∩ b) ∪ (a⊥ ∩ b)) C (a
∩ b) |
43 | 17, 22 | com2an 484 |
. . . . . . . . 9
((a ∩ b) ∪ (a⊥ ∩ b)) C (a
∩ b⊥
) |
44 | 42, 43 | com2or 483 |
. . . . . . . 8
((a ∩ b) ∪ (a⊥ ∩ b)) C ((a
∩ b) ∪ (a ∩ b⊥ )) |
45 | 17, 32 | com2or 483 |
. . . . . . . . 9
((a ∩ b) ∪ (a⊥ ∩ b)) C (a
∪ b⊥
) |
46 | 45, 28 | com2an 484 |
. . . . . . . 8
((a ∩ b) ∪ (a⊥ ∩ b)) C ((a
∪ b⊥ ) ∩ a⊥ ) |
47 | 44, 46 | fh1 469 |
. . . . . . 7
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (((a
∩ b) ∪ (a ∩ b⊥ )) ∪ ((a ∪ b⊥ ) ∩ a⊥ ))) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∩ ((a
∩ b) ∪ (a ∩ b⊥ ))) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ ((a
∪ b⊥ ) ∩ a⊥ ))) |
48 | | an4 86 |
. . . . . . . . . . 11
((a⊥ ∩ b) ∩ (a
∩ b⊥ )) = ((a⊥ ∩ a) ∩ (b
∩ b⊥
)) |
49 | | dff 101 |
. . . . . . . . . . . . . 14
0 = (b ∩ b⊥ ) |
50 | 49 | ax-r1 35 |
. . . . . . . . . . . . 13
(b ∩ b⊥ ) = 0 |
51 | 50 | lan 77 |
. . . . . . . . . . . 12
((a⊥ ∩ a) ∩ (b
∩ b⊥ )) = ((a⊥ ∩ a) ∩ 0) |
52 | | an0 108 |
. . . . . . . . . . . 12
((a⊥ ∩ a) ∩ 0) = 0 |
53 | 51, 52 | ax-r2 36 |
. . . . . . . . . . 11
((a⊥ ∩ a) ∩ (b
∩ b⊥ )) =
0 |
54 | 48, 53 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∩ b) ∩ (a
∩ b⊥ )) =
0 |
55 | 54 | lor 70 |
. . . . . . . . 9
((a ∩ b) ∪ ((a⊥ ∩ b) ∩ (a
∩ b⊥ ))) = ((a ∩ b) ∪
0) |
56 | 10 | comcom2 183 |
. . . . . . . . . . 11
(a ∩ b) C a⊥ |
57 | 56, 4 | com2an 484 |
. . . . . . . . . 10
(a ∩ b) C (a⊥ ∩ b) |
58 | 4 | comcom2 183 |
. . . . . . . . . . 11
(a ∩ b) C b⊥ |
59 | 10, 58 | com2an 484 |
. . . . . . . . . 10
(a ∩ b) C (a
∩ b⊥
) |
60 | 57, 59 | fh3 471 |
. . . . . . . . 9
((a ∩ b) ∪ ((a⊥ ∩ b) ∩ (a
∩ b⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ ((a
∩ b) ∪ (a ∩ b⊥ ))) |
61 | | or0 102 |
. . . . . . . . 9
((a ∩ b) ∪ 0) = (a
∩ b) |
62 | 55, 60, 61 | 3tr2 64 |
. . . . . . . 8
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ ((a
∩ b) ∪ (a ∩ b⊥ ))) = (a ∩ b) |
63 | 10, 58 | com2or 483 |
. . . . . . . . . . 11
(a ∩ b) C (a
∪ b⊥
) |
64 | 63, 56 | com2an 484 |
. . . . . . . . . 10
(a ∩ b) C ((a
∪ b⊥ ) ∩ a⊥ ) |
65 | 64, 57 | fh2r 474 |
. . . . . . . . 9
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ ((a
∪ b⊥ ) ∩ a⊥ )) = (((a ∩ b) ∩
((a ∪ b⊥ ) ∩ a⊥ )) ∪ ((a⊥ ∩ b) ∩ ((a
∪ b⊥ ) ∩ a⊥ ))) |
66 | | an12 81 |
. . . . . . . . . . . 12
((a ∩ b) ∩ ((a
∪ b⊥ ) ∩ a⊥ )) = ((a ∪ b⊥ ) ∩ ((a ∩ b) ∩
a⊥ )) |
67 | | an32 83 |
. . . . . . . . . . . . . . 15
((a ∩ b) ∩ a⊥ ) = ((a ∩ a⊥ ) ∩ b) |
68 | | ancom 74 |
. . . . . . . . . . . . . . . 16
((a ∩ a⊥ ) ∩ b) = (b ∩
(a ∩ a⊥ )) |
69 | | dff 101 |
. . . . . . . . . . . . . . . . . . 19
0 = (a ∩ a⊥ ) |
70 | 69 | ax-r1 35 |
. . . . . . . . . . . . . . . . . 18
(a ∩ a⊥ ) = 0 |
71 | 70 | lan 77 |
. . . . . . . . . . . . . . . . 17
(b ∩ (a ∩ a⊥ )) = (b ∩ 0) |
72 | | an0 108 |
. . . . . . . . . . . . . . . . 17
(b ∩ 0) = 0 |
73 | 71, 72 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
(b ∩ (a ∩ a⊥ )) = 0 |
74 | 68, 73 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((a ∩ a⊥ ) ∩ b) = 0 |
75 | 67, 74 | ax-r2 36 |
. . . . . . . . . . . . . 14
((a ∩ b) ∩ a⊥ ) = 0 |
76 | 75 | lan 77 |
. . . . . . . . . . . . 13
((a ∪ b⊥ ) ∩ ((a ∩ b) ∩
a⊥ )) = ((a ∪ b⊥ ) ∩ 0) |
77 | | an0 108 |
. . . . . . . . . . . . 13
((a ∪ b⊥ ) ∩ 0) = 0 |
78 | 76, 77 | ax-r2 36 |
. . . . . . . . . . . 12
((a ∪ b⊥ ) ∩ ((a ∩ b) ∩
a⊥ )) = 0 |
79 | 66, 78 | ax-r2 36 |
. . . . . . . . . . 11
((a ∩ b) ∩ ((a
∪ b⊥ ) ∩ a⊥ )) = 0 |
80 | | ancom 74 |
. . . . . . . . . . . 12
(((a⊥ ∩
b) ∩ (a ∪ b⊥ )) ∩ a⊥ ) = (a⊥ ∩ ((a⊥ ∩ b) ∩ (a
∪ b⊥
))) |
81 | | anass 76 |
. . . . . . . . . . . 12
(((a⊥ ∩
b) ∩ (a ∪ b⊥ )) ∩ a⊥ ) = ((a⊥ ∩ b) ∩ ((a
∪ b⊥ ) ∩ a⊥ )) |
82 | | anor2 89 |
. . . . . . . . . . . . . . . . . 18
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
83 | 82 | ax-r1 35 |
. . . . . . . . . . . . . . . . 17
(a ∪ b⊥ )⊥ = (a⊥ ∩ b) |
84 | 83 | con3 68 |
. . . . . . . . . . . . . . . 16
(a ∪ b⊥ ) = (a⊥ ∩ b)⊥ |
85 | 84 | lan 77 |
. . . . . . . . . . . . . . 15
((a⊥ ∩ b) ∩ (a
∪ b⊥ )) = ((a⊥ ∩ b) ∩ (a⊥ ∩ b)⊥ ) |
86 | | dff 101 |
. . . . . . . . . . . . . . . 16
0 = ((a⊥ ∩
b) ∩ (a⊥ ∩ b)⊥ ) |
87 | 86 | ax-r1 35 |
. . . . . . . . . . . . . . 15
((a⊥ ∩ b) ∩ (a⊥ ∩ b)⊥ ) = 0 |
88 | 85, 87 | ax-r2 36 |
. . . . . . . . . . . . . 14
((a⊥ ∩ b) ∩ (a
∪ b⊥ )) =
0 |
89 | 88 | lan 77 |
. . . . . . . . . . . . 13
(a⊥ ∩
((a⊥ ∩ b) ∩ (a
∪ b⊥ ))) = (a⊥ ∩ 0) |
90 | | an0 108 |
. . . . . . . . . . . . 13
(a⊥ ∩ 0) =
0 |
91 | 89, 90 | ax-r2 36 |
. . . . . . . . . . . 12
(a⊥ ∩
((a⊥ ∩ b) ∩ (a
∪ b⊥ ))) =
0 |
92 | 80, 81, 91 | 3tr2 64 |
. . . . . . . . . . 11
((a⊥ ∩ b) ∩ ((a
∪ b⊥ ) ∩ a⊥ )) = 0 |
93 | 79, 92 | 2or 72 |
. . . . . . . . . 10
(((a ∩ b) ∩ ((a
∪ b⊥ ) ∩ a⊥ )) ∪ ((a⊥ ∩ b) ∩ ((a
∪ b⊥ ) ∩ a⊥ ))) = (0 ∪
0) |
94 | | or0 102 |
. . . . . . . . . 10
(0 ∪ 0) = 0 |
95 | 93, 94 | ax-r2 36 |
. . . . . . . . 9
(((a ∩ b) ∩ ((a
∪ b⊥ ) ∩ a⊥ )) ∪ ((a⊥ ∩ b) ∩ ((a
∪ b⊥ ) ∩ a⊥ ))) = 0 |
96 | 65, 95 | ax-r2 36 |
. . . . . . . 8
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ ((a
∪ b⊥ ) ∩ a⊥ )) = 0 |
97 | 62, 96 | 2or 72 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ ((a
∩ b) ∪ (a ∩ b⊥ ))) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ ((a
∪ b⊥ ) ∩ a⊥ ))) = ((a ∩ b) ∪
0) |
98 | 47, 97 | ax-r2 36 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (((a
∩ b) ∪ (a ∩ b⊥ )) ∪ ((a ∪ b⊥ ) ∩ a⊥ ))) = ((a ∩ b) ∪
0) |
99 | 41, 98 | ax-r2 36 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = ((a ∩ b) ∪
0) |
100 | 99, 61 | ax-r2 36 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = (a ∩ b) |
101 | | coman2 186 |
. . . . . . . . . . . 12
(b ∩ a) C a |
102 | 101 | comcom 453 |
. . . . . . . . . . 11
a C (b ∩ a) |
103 | | coman2 186 |
. . . . . . . . . . . 12
(b⊥ ∩ a) C a |
104 | 103 | comcom 453 |
. . . . . . . . . . 11
a C (b⊥ ∩ a) |
105 | 102, 104 | com2or 483 |
. . . . . . . . . 10
a C ((b ∩ a) ∪
(b⊥ ∩ a)) |
106 | 105 | comcom3 454 |
. . . . . . . . 9
a⊥ C
((b ∩ a) ∪ (b⊥ ∩ a)) |
107 | 106 | comcom 453 |
. . . . . . . 8
((b ∩ a) ∪ (b⊥ ∩ a)) C a⊥ |
108 | | coman1 185 |
. . . . . . . . . . 11
(b ∩ a) C b |
109 | 108 | comcom 453 |
. . . . . . . . . 10
b C (b ∩ a) |
110 | | coman1 185 |
. . . . . . . . . . . . 13
(b⊥ ∩ a) C b⊥ |
111 | 110 | comcom 453 |
. . . . . . . . . . . 12
b⊥ C
(b⊥ ∩ a) |
112 | 111 | comcom2 183 |
. . . . . . . . . . 11
b⊥ C
(b⊥ ∩ a)⊥ |
113 | 112 | comcom5 458 |
. . . . . . . . . 10
b C (b⊥ ∩ a) |
114 | 109, 113 | com2or 483 |
. . . . . . . . 9
b C ((b ∩ a) ∪
(b⊥ ∩ a)) |
115 | 114 | comcom 453 |
. . . . . . . 8
((b ∩ a) ∪ (b⊥ ∩ a)) C b |
116 | 107, 115 | com2or 483 |
. . . . . . 7
((b ∩ a) ∪ (b⊥ ∩ a)) C (a⊥ ∪ b) |
117 | 109 | comcom3 454 |
. . . . . . . . 9
b⊥ C
(b ∩ a) |
118 | 117, 111 | com2or 483 |
. . . . . . . 8
b⊥ C
((b ∩ a) ∪ (b⊥ ∩ a)) |
119 | 118 | comcom 453 |
. . . . . . 7
((b ∩ a) ∪ (b⊥ ∩ a)) C b⊥ |
120 | 116, 119 | com2an 484 |
. . . . . 6
((b ∩ a) ∪ (b⊥ ∩ a)) C ((a⊥ ∪ b) ∩ b⊥ ) |
121 | 105 | comcom 453 |
. . . . . . . 8
((b ∩ a) ∪ (b⊥ ∩ a)) C a |
122 | 119, 121 | com2or 483 |
. . . . . . 7
((b ∩ a) ∪ (b⊥ ∩ a)) C (b⊥ ∪ a) |
123 | 102 | comcom3 454 |
. . . . . . . . 9
a⊥ C
(b ∩ a) |
124 | 104 | comcom3 454 |
. . . . . . . . 9
a⊥ C
(b⊥ ∩ a) |
125 | 123, 124 | com2or 483 |
. . . . . . . 8
a⊥ C
((b ∩ a) ∪ (b⊥ ∩ a)) |
126 | 125 | comcom 453 |
. . . . . . 7
((b ∩ a) ∪ (b⊥ ∩ a)) C a⊥ |
127 | 122, 126 | com2an 484 |
. . . . . 6
((b ∩ a) ∪ (b⊥ ∩ a)) C ((b⊥ ∪ a) ∩ a⊥ ) |
128 | 120, 127 | fh2 470 |
. . . . 5
(((a⊥ ∪
b) ∩ b⊥ ) ∩ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = ((((a⊥ ∪ b) ∩ b⊥ ) ∩ ((b ∩ a) ∪
(b⊥ ∩ a))) ∪ (((a⊥ ∪ b) ∩ b⊥ ) ∩ ((b⊥ ∪ a) ∩ a⊥ ))) |
129 | | lea 160 |
. . . . . . . . . . . . 13
(b ∩ a) ≤ b |
130 | 129 | lecon 154 |
. . . . . . . . . . . 12
b⊥ ≤ (b ∩ a)⊥ |
131 | 130 | lelan 167 |
. . . . . . . . . . 11
((a⊥ ∪ b) ∩ b⊥ ) ≤ ((a⊥ ∪ b) ∩ (b
∩ a)⊥
) |
132 | 131 | lecon 154 |
. . . . . . . . . 10
((a⊥ ∪ b) ∩ (b
∩ a)⊥
)⊥ ≤ ((a⊥ ∪ b) ∩ b⊥
)⊥ |
133 | 132 | lelan 167 |
. . . . . . . . 9
(((a⊥ ∪
b) ∩ b⊥ ) ∩ ((a⊥ ∪ b) ∩ (b
∩ a)⊥
)⊥ ) ≤ (((a⊥ ∪ b) ∩ b⊥ ) ∩ ((a⊥ ∪ b) ∩ b⊥ )⊥
) |
134 | | ax-a2 31 |
. . . . . . . . . . 11
((b ∩ a) ∪ (b⊥ ∩ a)) = ((b⊥ ∩ a) ∪ (b
∩ a)) |
135 | | oran 87 |
. . . . . . . . . . . 12
((b⊥ ∩ a) ∪ (b
∩ a)) = ((b⊥ ∩ a)⊥ ∩ (b ∩ a)⊥
)⊥ |
136 | | anor1 88 |
. . . . . . . . . . . . . . . 16
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
137 | 36, 136 | ax-r2 36 |
. . . . . . . . . . . . . . 15
(b⊥ ∩ a) = (a⊥ ∪ b)⊥ |
138 | 137 | con2 67 |
. . . . . . . . . . . . . 14
(b⊥ ∩ a)⊥ = (a⊥ ∪ b) |
139 | 138 | ran 78 |
. . . . . . . . . . . . 13
((b⊥ ∩ a)⊥ ∩ (b ∩ a)⊥ ) = ((a⊥ ∪ b) ∩ (b
∩ a)⊥
) |
140 | 139 | ax-r4 37 |
. . . . . . . . . . . 12
((b⊥ ∩ a)⊥ ∩ (b ∩ a)⊥ )⊥ =
((a⊥ ∪ b) ∩ (b
∩ a)⊥
)⊥ |
141 | 135, 140 | ax-r2 36 |
. . . . . . . . . . 11
((b⊥ ∩ a) ∪ (b
∩ a)) = ((a⊥ ∪ b) ∩ (b
∩ a)⊥
)⊥ |
142 | 134, 141 | ax-r2 36 |
. . . . . . . . . 10
((b ∩ a) ∪ (b⊥ ∩ a)) = ((a⊥ ∪ b) ∩ (b
∩ a)⊥
)⊥ |
143 | 142 | lan 77 |
. . . . . . . . 9
(((a⊥ ∪
b) ∩ b⊥ ) ∩ ((b ∩ a) ∪
(b⊥ ∩ a))) = (((a⊥ ∪ b) ∩ b⊥ ) ∩ ((a⊥ ∪ b) ∩ (b
∩ a)⊥
)⊥ ) |
144 | | dff 101 |
. . . . . . . . 9
0 = (((a⊥ ∪
b) ∩ b⊥ ) ∩ ((a⊥ ∪ b) ∩ b⊥ )⊥
) |
145 | 133, 143,
144 | le3tr1 140 |
. . . . . . . 8
(((a⊥ ∪
b) ∩ b⊥ ) ∩ ((b ∩ a) ∪
(b⊥ ∩ a))) ≤ 0 |
146 | | le0 147 |
. . . . . . . 8
0 ≤ (((a⊥ ∪
b) ∩ b⊥ ) ∩ ((b ∩ a) ∪
(b⊥ ∩ a))) |
147 | 145, 146 | lebi 145 |
. . . . . . 7
(((a⊥ ∪
b) ∩ b⊥ ) ∩ ((b ∩ a) ∪
(b⊥ ∩ a))) = 0 |
148 | | an4 86 |
. . . . . . . 8
(((a⊥ ∪
b) ∩ b⊥ ) ∩ ((b⊥ ∪ a) ∩ a⊥ )) = (((a⊥ ∪ b) ∩ (b⊥ ∪ a)) ∩ (b⊥ ∩ a⊥ )) |
149 | | ancom 74 |
. . . . . . . . . 10
(((a⊥ ∪
b) ∩ (b⊥ ∪ a)) ∩ (b⊥ ∩ a⊥ )) = ((b⊥ ∩ a⊥ ) ∩ ((a⊥ ∪ b) ∩ (b⊥ ∪ a))) |
150 | | ancom 74 |
. . . . . . . . . . . 12
((a⊥ ∪ b) ∩ (b⊥ ∪ a)) = ((b⊥ ∪ a) ∩ (a⊥ ∪ b)) |
151 | 150 | lan 77 |
. . . . . . . . . . 11
((b⊥ ∩ a⊥ ) ∩ ((a⊥ ∪ b) ∩ (b⊥ ∪ a))) = ((b⊥ ∩ a⊥ ) ∩ ((b⊥ ∪ a) ∩ (a⊥ ∪ b))) |
152 | | leo 158 |
. . . . . . . . . . . . 13
b⊥ ≤ (b⊥ ∪ a) |
153 | | leo 158 |
. . . . . . . . . . . . 13
a⊥ ≤ (a⊥ ∪ b) |
154 | 152, 153 | le2an 169 |
. . . . . . . . . . . 12
(b⊥ ∩ a⊥ ) ≤ ((b⊥ ∪ a) ∩ (a⊥ ∪ b)) |
155 | 154 | df2le2 136 |
. . . . . . . . . . 11
((b⊥ ∩ a⊥ ) ∩ ((b⊥ ∪ a) ∩ (a⊥ ∪ b))) = (b⊥ ∩ a⊥ ) |
156 | 151, 155 | ax-r2 36 |
. . . . . . . . . 10
((b⊥ ∩ a⊥ ) ∩ ((a⊥ ∪ b) ∩ (b⊥ ∪ a))) = (b⊥ ∩ a⊥ ) |
157 | 149, 156 | ax-r2 36 |
. . . . . . . . 9
(((a⊥ ∪
b) ∩ (b⊥ ∪ a)) ∩ (b⊥ ∩ a⊥ )) = (b⊥ ∩ a⊥ ) |
158 | | ancom 74 |
. . . . . . . . 9
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
159 | 157, 158 | ax-r2 36 |
. . . . . . . 8
(((a⊥ ∪
b) ∩ (b⊥ ∪ a)) ∩ (b⊥ ∩ a⊥ )) = (a⊥ ∩ b⊥ ) |
160 | 148, 159 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∪
b) ∩ b⊥ ) ∩ ((b⊥ ∪ a) ∩ a⊥ )) = (a⊥ ∩ b⊥ ) |
161 | 147, 160 | 2or 72 |
. . . . . 6
((((a⊥ ∪
b) ∩ b⊥ ) ∩ ((b ∩ a) ∪
(b⊥ ∩ a))) ∪ (((a⊥ ∪ b) ∩ b⊥ ) ∩ ((b⊥ ∪ a) ∩ a⊥ ))) = (0 ∪ (a⊥ ∩ b⊥ )) |
162 | | ax-a2 31 |
. . . . . . 7
(0 ∪ (a⊥ ∩
b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ 0) |
163 | | or0 102 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∪ 0) = (a⊥ ∩ b⊥ ) |
164 | 162, 163 | ax-r2 36 |
. . . . . 6
(0 ∪ (a⊥ ∩
b⊥ )) = (a⊥ ∩ b⊥ ) |
165 | 161, 164 | ax-r2 36 |
. . . . 5
((((a⊥ ∪
b) ∩ b⊥ ) ∩ ((b ∩ a) ∪
(b⊥ ∩ a))) ∪ (((a⊥ ∪ b) ∩ b⊥ ) ∩ ((b⊥ ∪ a) ∩ a⊥ ))) = (a⊥ ∩ b⊥ ) |
166 | 128, 165 | ax-r2 36 |
. . . 4
(((a⊥ ∪
b) ∩ b⊥ ) ∩ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = (a⊥ ∩ b⊥ ) |
167 | 100, 166 | 2or 72 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) ∪ (((a⊥ ∪ b) ∩ b⊥ ) ∩ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )))) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
168 | 34, 167 | ax-r2 36 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∩ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
169 | 3, 168 | ax-r2 36 |
1
((a →4 b) ∩ (b
→4 a)) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |