QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u5lem1 GIF version

Theorem u5lem1 738
Description: Lemma for unified implication study. (Contributed by NM, 16-Dec-1997.)
Assertion
Ref Expression
u5lem1 ((a5 b) →5 a) = ((ab) ∩ (ab ))

Proof of Theorem u5lem1
StepHypRef Expression
1 u5lemc1 684 . . . 4 a C (a5 b)
21comcom 453 . . 3 (a5 b) C a
32u5lemc4 705 . 2 ((a5 b) →5 a) = ((a5 b)a)
4 u5lemnoa 664 . 2 ((a5 b)a) = ((ab) ∩ (ab ))
53, 4ax-r2 36 1 ((a5 b) →5 a) = ((ab) ∩ (ab ))
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  5 wi5 16
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i5 48  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  u5lem1n  743
  Copyright terms: Public domain W3C validator