Proof of Theorem u4lem1
Step | Hyp | Ref
| Expression |
1 | | df-i4 47 |
. 2
((a →4 b) →4 a) = ((((a
→4 b) ∩ a) ∪ ((a
→4 b)⊥
∩ a)) ∪ (((a →4 b)⊥ ∪ a) ∩ a⊥ )) |
2 | | u4lemaa 603 |
. . . . 5
((a →4 b) ∩ a) =
(a ∩ b) |
3 | | u4lemnaa 643 |
. . . . 5
((a →4 b)⊥ ∩ a) = (a ∩
b⊥ ) |
4 | 2, 3 | 2or 72 |
. . . 4
(((a →4 b) ∩ a)
∪ ((a →4 b)⊥ ∩ a)) = ((a ∩
b) ∪ (a ∩ b⊥ )) |
5 | | u4lemnoa 663 |
. . . . 5
((a →4 b)⊥ ∪ a) = ((a ∪
b) ∩ (a ∪ b⊥ )) |
6 | 5 | ran 78 |
. . . 4
(((a →4 b)⊥ ∪ a) ∩ a⊥ ) = (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ a⊥ ) |
7 | 4, 6 | 2or 72 |
. . 3
((((a →4 b) ∩ a)
∪ ((a →4 b)⊥ ∩ a)) ∪ (((a
→4 b)⊥
∪ a) ∩ a⊥ )) = (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ a⊥ )) |
8 | | ancom 74 |
. . . . 5
(((a ∪ b) ∩ (a
∪ b⊥ )) ∩ a⊥ ) = (a⊥ ∩ ((a ∪ b) ∩
(a ∪ b⊥ ))) |
9 | 8 | lor 70 |
. . . 4
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
(((a ∪ b) ∩ (a
∪ b⊥ )) ∩ a⊥ )) = (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ (a⊥ ∩ ((a ∪ b) ∩
(a ∪ b⊥ )))) |
10 | | comanr1 464 |
. . . . . . . 8
a C (a ∩ b) |
11 | | comanr1 464 |
. . . . . . . 8
a C (a ∩ b⊥ ) |
12 | 10, 11 | com2or 483 |
. . . . . . 7
a C ((a ∩ b) ∪
(a ∩ b⊥ )) |
13 | 12 | comcom3 454 |
. . . . . 6
a⊥ C
((a ∩ b) ∪ (a
∩ b⊥
)) |
14 | | comorr 184 |
. . . . . . . 8
a C (a ∪ b) |
15 | | comorr 184 |
. . . . . . . 8
a C (a ∪ b⊥ ) |
16 | 14, 15 | com2an 484 |
. . . . . . 7
a C ((a ∪ b) ∩
(a ∪ b⊥ )) |
17 | 16 | comcom3 454 |
. . . . . 6
a⊥ C
((a ∪ b) ∩ (a
∪ b⊥
)) |
18 | 13, 17 | fh4 472 |
. . . . 5
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
(a⊥ ∩ ((a ∪ b) ∩
(a ∪ b⊥ )))) = ((((a ∩ b) ∪
(a ∩ b⊥ )) ∪ a⊥ ) ∩ (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ ((a ∪ b) ∩
(a ∪ b⊥ )))) |
19 | | comor1 461 |
. . . . . . . . . . 11
(a ∪ b) C a |
20 | | comor2 462 |
. . . . . . . . . . 11
(a ∪ b) C b |
21 | 19, 20 | com2an 484 |
. . . . . . . . . 10
(a ∪ b) C (a
∩ b) |
22 | 20 | comcom2 183 |
. . . . . . . . . . 11
(a ∪ b) C b⊥ |
23 | 19, 22 | com2an 484 |
. . . . . . . . . 10
(a ∪ b) C (a
∩ b⊥
) |
24 | 21, 23 | com2or 483 |
. . . . . . . . 9
(a ∪ b) C ((a
∩ b) ∪ (a ∩ b⊥ )) |
25 | 19, 22 | com2or 483 |
. . . . . . . . 9
(a ∪ b) C (a
∪ b⊥
) |
26 | 24, 25 | fh4 472 |
. . . . . . . 8
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
((a ∪ b) ∩ (a
∪ b⊥ ))) =
((((a ∩ b) ∪ (a
∩ b⊥ )) ∪
(a ∪ b)) ∩ (((a
∩ b) ∪ (a ∩ b⊥ )) ∪ (a ∪ b⊥ ))) |
27 | | lea 160 |
. . . . . . . . . . . 12
(a ∩ b) ≤ a |
28 | | lea 160 |
. . . . . . . . . . . 12
(a ∩ b⊥ ) ≤ a |
29 | 27, 28 | lel2or 170 |
. . . . . . . . . . 11
((a ∩ b) ∪ (a
∩ b⊥ )) ≤ a |
30 | | leo 158 |
. . . . . . . . . . 11
a ≤ (a ∪ b) |
31 | 29, 30 | letr 137 |
. . . . . . . . . 10
((a ∩ b) ∪ (a
∩ b⊥ )) ≤ (a ∪ b) |
32 | 31 | df-le2 131 |
. . . . . . . . 9
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
(a ∪ b)) = (a ∪
b) |
33 | | leo 158 |
. . . . . . . . . . 11
a ≤ (a ∪ b⊥ ) |
34 | 29, 33 | letr 137 |
. . . . . . . . . 10
((a ∩ b) ∪ (a
∩ b⊥ )) ≤ (a ∪ b⊥ ) |
35 | 34 | df-le2 131 |
. . . . . . . . 9
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
(a ∪ b⊥ )) = (a ∪ b⊥ ) |
36 | 32, 35 | 2an 79 |
. . . . . . . 8
((((a ∩ b) ∪ (a
∩ b⊥ )) ∪
(a ∪ b)) ∩ (((a
∩ b) ∪ (a ∩ b⊥ )) ∪ (a ∪ b⊥ ))) = ((a ∪ b) ∩
(a ∪ b⊥ )) |
37 | 26, 36 | ax-r2 36 |
. . . . . . 7
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
((a ∪ b) ∩ (a
∪ b⊥ ))) = ((a ∪ b) ∩
(a ∪ b⊥ )) |
38 | 37 | lan 77 |
. . . . . 6
((((a ∩ b) ∪ (a
∩ b⊥ )) ∪ a⊥ ) ∩ (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ ((a ∪ b) ∩
(a ∪ b⊥ )))) = ((((a ∩ b) ∪
(a ∩ b⊥ )) ∪ a⊥ ) ∩ ((a ∪ b) ∩
(a ∪ b⊥ ))) |
39 | | id 59 |
. . . . . 6
((((a ∩ b) ∪ (a
∩ b⊥ )) ∪ a⊥ ) ∩ ((a ∪ b) ∩
(a ∪ b⊥ ))) = ((((a ∩ b) ∪
(a ∩ b⊥ )) ∪ a⊥ ) ∩ ((a ∪ b) ∩
(a ∪ b⊥ ))) |
40 | 38, 39 | ax-r2 36 |
. . . . 5
((((a ∩ b) ∪ (a
∩ b⊥ )) ∪ a⊥ ) ∩ (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ ((a ∪ b) ∩
(a ∪ b⊥ )))) = ((((a ∩ b) ∪
(a ∩ b⊥ )) ∪ a⊥ ) ∩ ((a ∪ b) ∩
(a ∪ b⊥ ))) |
41 | 18, 40 | ax-r2 36 |
. . . 4
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
(a⊥ ∩ ((a ∪ b) ∩
(a ∪ b⊥ )))) = ((((a ∩ b) ∪
(a ∩ b⊥ )) ∪ a⊥ ) ∩ ((a ∪ b) ∩
(a ∪ b⊥ ))) |
42 | 9, 41 | ax-r2 36 |
. . 3
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
(((a ∪ b) ∩ (a
∪ b⊥ )) ∩ a⊥ )) = ((((a ∩ b) ∪
(a ∩ b⊥ )) ∪ a⊥ ) ∩ ((a ∪ b) ∩
(a ∪ b⊥ ))) |
43 | 7, 42 | ax-r2 36 |
. 2
((((a →4 b) ∩ a)
∪ ((a →4 b)⊥ ∩ a)) ∪ (((a
→4 b)⊥
∪ a) ∩ a⊥ )) = ((((a ∩ b) ∪
(a ∩ b⊥ )) ∪ a⊥ ) ∩ ((a ∪ b) ∩
(a ∪ b⊥ ))) |
44 | 1, 43 | ax-r2 36 |
1
((a →4 b) →4 a) = ((((a ∩
b) ∪ (a ∩ b⊥ )) ∪ a⊥ ) ∩ ((a ∪ b) ∩
(a ∪ b⊥ ))) |