| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u5lemc2 | GIF version | ||
| Description: Commutation theorem for relevance implication. (Contributed by NM, 14-Dec-1997.) |
| Ref | Expression |
|---|---|
| ulemc2.1 | a C b |
| ulemc2.2 | a C c |
| Ref | Expression |
|---|---|
| u5lemc2 | a C (b →5 c) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulemc2.1 | . . . . 5 a C b | |
| 2 | ulemc2.2 | . . . . 5 a C c | |
| 3 | 1, 2 | com2an 484 | . . . 4 a C (b ∩ c) |
| 4 | 1 | comcom2 183 | . . . . 5 a C b⊥ |
| 5 | 4, 2 | com2an 484 | . . . 4 a C (b⊥ ∩ c) |
| 6 | 3, 5 | com2or 483 | . . 3 a C ((b ∩ c) ∪ (b⊥ ∩ c)) |
| 7 | 2 | comcom2 183 | . . . 4 a C c⊥ |
| 8 | 4, 7 | com2an 484 | . . 3 a C (b⊥ ∩ c⊥ ) |
| 9 | 6, 8 | com2or 483 | . 2 a C (((b ∩ c) ∪ (b⊥ ∩ c)) ∪ (b⊥ ∩ c⊥ )) |
| 10 | df-i5 48 | . . 3 (b →5 c) = (((b ∩ c) ∪ (b⊥ ∩ c)) ∪ (b⊥ ∩ c⊥ )) | |
| 11 | 10 | ax-r1 35 | . 2 (((b ∩ c) ∪ (b⊥ ∩ c)) ∪ (b⊥ ∩ c⊥ )) = (b →5 c) |
| 12 | 9, 11 | cbtr 182 | 1 a C (b →5 c) |
| Colors of variables: term |
| Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →5 wi5 16 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i5 48 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |