Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ud2lem0b | GIF version |
Description: Introduce →2 to the right. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
ud2lem0a.1 | a = b |
Ref | Expression |
---|---|
ud2lem0b | (a →2 c) = (b →2 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ud2lem0a.1 | . . . . 5 a = b | |
2 | 1 | ax-r4 37 | . . . 4 a⊥ = b⊥ |
3 | 2 | ran 78 | . . 3 (a⊥ ∩ c⊥ ) = (b⊥ ∩ c⊥ ) |
4 | 3 | lor 70 | . 2 (c ∪ (a⊥ ∩ c⊥ )) = (c ∪ (b⊥ ∩ c⊥ )) |
5 | df-i2 45 | . 2 (a →2 c) = (c ∪ (a⊥ ∩ c⊥ )) | |
6 | df-i2 45 | . 2 (b →2 c) = (c ∪ (b⊥ ∩ c⊥ )) | |
7 | 4, 5, 6 | 3tr1 63 | 1 (a →2 c) = (b →2 c) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i2 45 |
This theorem is referenced by: i2i1 267 i1i2con1 268 ud2 596 2oath1i1 827 |
Copyright terms: Public domain | W3C validator |