QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  ud2lem0b GIF version

Theorem ud2lem0b 259
Description: Introduce 2 to the right. (Contributed by NM, 23-Nov-1997.)
Hypothesis
Ref Expression
ud2lem0a.1 a = b
Assertion
Ref Expression
ud2lem0b (a2 c) = (b2 c)

Proof of Theorem ud2lem0b
StepHypRef Expression
1 ud2lem0a.1 . . . . 5 a = b
21ax-r4 37 . . . 4 a = b
32ran 78 . . 3 (ac ) = (bc )
43lor 70 . 2 (c ∪ (ac )) = (c ∪ (bc ))
5 df-i2 45 . 2 (a2 c) = (c ∪ (ac ))
6 df-i2 45 . 2 (b2 c) = (c ∪ (bc ))
74, 5, 63tr1 63 1 (a2 c) = (b2 c)
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  2 wi2 13
This theorem was proved from axioms:  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-i2 45
This theorem is referenced by:  i2i1  267  i1i2con1  268  ud2  596  2oath1i1  827
  Copyright terms: Public domain W3C validator