Proof of Theorem 2oath1i1
Step | Hyp | Ref
| Expression |
1 | | 2oath1 826 |
. 2
((c⊥ →2
a⊥ ) ∩
((a⊥ ∪ b⊥ ) →2 ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ )))) = ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ )) |
2 | | i1i2 266 |
. . 3
(a →1 c) = (c⊥ →2 a⊥ ) |
3 | | i1i2 266 |
. . . . . 6
(b →1 c) = (c⊥ →2 b⊥ ) |
4 | 2, 3 | 2an 79 |
. . . . 5
((a →1 c) ∩ (b
→1 c)) = ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ )) |
5 | 4 | ud2lem0a 258 |
. . . 4
((a ∩ b)⊥ →2 ((a →1 c) ∩ (b
→1 c))) = ((a ∩ b)⊥ →2 ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ ))) |
6 | | oran3 93 |
. . . . . 6
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
7 | 6 | ax-r1 35 |
. . . . 5
(a ∩ b)⊥ = (a⊥ ∪ b⊥ ) |
8 | 7 | ud2lem0b 259 |
. . . 4
((a ∩ b)⊥ →2 ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ ))) = ((a⊥ ∪ b⊥ ) →2 ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ ))) |
9 | 5, 8 | ax-r2 36 |
. . 3
((a ∩ b)⊥ →2 ((a →1 c) ∩ (b
→1 c))) = ((a⊥ ∪ b⊥ ) →2 ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ ))) |
10 | 2, 9 | 2an 79 |
. 2
((a →1 c) ∩ ((a
∩ b)⊥ →2
((a →1 c) ∩ (b
→1 c)))) = ((c⊥ →2 a⊥ ) ∩ ((a⊥ ∪ b⊥ ) →2 ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ )))) |
11 | 1, 10, 4 | 3tr1 63 |
1
((a →1 c) ∩ ((a
∩ b)⊥ →2
((a →1 c) ∩ (b
→1 c)))) = ((a →1 c) ∩ (b
→1 c)) |