Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  i2i1 GIF version

Theorem i2i1 267
 Description: Correspondence between Sasaki and Dishkant conditionals. (Contributed by NM, 7-Feb-1999.)
Assertion
Ref Expression
i2i1 (a2 b) = (b1 a )

Proof of Theorem i2i1
StepHypRef Expression
1 ax-a1 30 . . 3 a = a
21ud2lem0b 259 . 2 (a2 b ) = (a 2 b )
3 ax-a1 30 . . 3 b = b
43ud2lem0a 258 . 2 (a2 b) = (a2 b )
5 i1i2 266 . 2 (b1 a ) = (a 2 b )
62, 4, 53tr1 63 1 (a2 b) = (b1 a )
 Colors of variables: term Syntax hints:   = wb 1  ⊥ wn 4   →1 wi1 12   →2 wi2 13 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38 This theorem depends on definitions:  df-a 40  df-i1 44  df-i2 45 This theorem is referenced by:  nom40  325  nom41  326  nom42  327  nom43  328  nom44  329  nom45  330  nom50  331  nom51  332  nom52  333  nom53  334  nom54  335  nom55  336  oal2  999
 Copyright terms: Public domain W3C validator