Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > i2i1 | GIF version |
Description: Correspondence between Sasaki and Dishkant conditionals. (Contributed by NM, 7-Feb-1999.) |
Ref | Expression |
---|---|
i2i1 | (a →2 b) = (b⊥ →1 a⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a1 30 | . . 3 a = a⊥ ⊥ | |
2 | 1 | ud2lem0b 259 | . 2 (a →2 b⊥ ⊥ ) = (a⊥ ⊥ →2 b⊥ ⊥ ) |
3 | ax-a1 30 | . . 3 b = b⊥ ⊥ | |
4 | 3 | ud2lem0a 258 | . 2 (a →2 b) = (a →2 b⊥ ⊥ ) |
5 | i1i2 266 | . 2 (b⊥ →1 a⊥ ) = (a⊥ ⊥ →2 b⊥ ⊥ ) | |
6 | 2, 4, 5 | 3tr1 63 | 1 (a →2 b) = (b⊥ →1 a⊥ ) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 →1 wi1 12 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i1 44 df-i2 45 |
This theorem is referenced by: nom40 325 nom41 326 nom42 327 nom43 328 nom44 329 nom45 330 nom50 331 nom51 332 nom52 333 nom53 334 nom54 335 nom55 336 oal2 999 |
Copyright terms: Public domain | W3C validator |