| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud3lem0a | GIF version | ||
| Description: Introduce Kalmbach implication to the left. (Contributed by NM, 23-Nov-1997.) |
| Ref | Expression |
|---|---|
| ud3lem0a.1 | a = b |
| Ref | Expression |
|---|---|
| ud3lem0a | (c →3 a) = (c →3 b) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ud3lem0a.1 | . 2 a = b | |
| 2 | 1 | li3 252 | 1 (c →3 a) = (c →3 b) |
| Colors of variables: term |
| Syntax hints: = wb 1 →3 wi3 14 |
| This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i3 46 |
| This theorem is referenced by: nom44 329 ud3 597 u3lem11a 787 u3lem14a 791 u3lem14aa 792 u3lem14aa2 793 |
| Copyright terms: Public domain | W3C validator |