QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  ud3lem0a GIF version

Theorem ud3lem0a 260
Description: Introduce Kalmbach implication to the left. (Contributed by NM, 23-Nov-1997.)
Hypothesis
Ref Expression
ud3lem0a.1 a = b
Assertion
Ref Expression
ud3lem0a (c3 a) = (c3 b)

Proof of Theorem ud3lem0a
StepHypRef Expression
1 ud3lem0a.1 . 2 a = b
21li3 252 1 (c3 a) = (c3 b)
Colors of variables: term
Syntax hints:   = wb 1  3 wi3 14
This theorem was proved from axioms:  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-i3 46
This theorem is referenced by:  nom44  329  ud3  597  u3lem11a  787  u3lem14a  791  u3lem14aa  792  u3lem14aa2  793
  Copyright terms: Public domain W3C validator