Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ud3lem0b | GIF version |
Description: Introduce Kalmbach implication to the right. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
ud3lem0a.1 | a = b |
Ref | Expression |
---|---|
ud3lem0b | (a →3 c) = (b →3 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ud3lem0a.1 | . 2 a = b | |
2 | 1 | ri3 253 | 1 (a →3 c) = (b →3 c) |
Colors of variables: term |
Syntax hints: = wb 1 →3 wi3 14 |
This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i3 46 |
This theorem is referenced by: ud3lem2 571 ud3 597 |
Copyright terms: Public domain | W3C validator |