| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud3 | GIF version | ||
| Description: Unified disjunction for Kalmbach implication. (Contributed by NM, 23-Nov-1997.) |
| Ref | Expression |
|---|---|
| ud3 | (a ∪ b) = ((a →3 b) →3 (((a →3 b) →3 (b →3 a)) →3 a)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ud3lem1 570 | . . . . . 6 ((a →3 b) →3 (b →3 a)) = (a ∪ (a⊥ ∩ b⊥ )) | |
| 2 | 1 | ud3lem0b 261 | . . . . 5 (((a →3 b) →3 (b →3 a)) →3 a) = ((a ∪ (a⊥ ∩ b⊥ )) →3 a) |
| 3 | ud3lem2 571 | . . . . 5 ((a ∪ (a⊥ ∩ b⊥ )) →3 a) = (a ∪ b) | |
| 4 | 2, 3 | ax-r2 36 | . . . 4 (((a →3 b) →3 (b →3 a)) →3 a) = (a ∪ b) |
| 5 | 4 | ud3lem0a 260 | . . 3 ((a →3 b) →3 (((a →3 b) →3 (b →3 a)) →3 a)) = ((a →3 b) →3 (a ∪ b)) |
| 6 | ud3lem3 576 | . . 3 ((a →3 b) →3 (a ∪ b)) = (a ∪ b) | |
| 7 | 5, 6 | ax-r2 36 | . 2 ((a →3 b) →3 (((a →3 b) →3 (b →3 a)) →3 a)) = (a ∪ b) |
| 8 | 7 | ax-r1 35 | 1 (a ∪ b) = ((a →3 b) →3 (((a →3 b) →3 (b →3 a)) →3 a)) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →3 wi3 14 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |