Proof of Theorem ud3lem2
| Step | Hyp | Ref
| Expression |
| 1 | | oran 87 |
. . . . . . 7
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
| 2 | 1 | ax-r1 35 |
. . . . . 6
(a⊥ ∩ b⊥ )⊥ = (a ∪ b) |
| 3 | 2 | con3 68 |
. . . . 5
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
| 4 | 3 | lor 70 |
. . . 4
(a ∪ (a⊥ ∩ b⊥ )) = (a ∪ (a ∪
b)⊥ ) |
| 5 | | anor2 89 |
. . . . . 6
(a⊥ ∩ (a ∪ b)) =
(a ∪ (a ∪ b)⊥
)⊥ |
| 6 | 5 | ax-r1 35 |
. . . . 5
(a ∪ (a ∪ b)⊥ )⊥ = (a⊥ ∩ (a ∪ b)) |
| 7 | 6 | con3 68 |
. . . 4
(a ∪ (a ∪ b)⊥ ) = (a⊥ ∩ (a ∪ b))⊥ |
| 8 | 4, 7 | ax-r2 36 |
. . 3
(a ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∩ (a ∪ b))⊥ |
| 9 | 8 | ud3lem0b 261 |
. 2
((a ∪ (a⊥ ∩ b⊥ )) →3 a) = ((a⊥ ∩ (a ∪ b))⊥ →3 a) |
| 10 | | df-i3 46 |
. . 3
((a⊥ ∩
(a ∪ b))⊥ →3 a) = ((((a⊥ ∩ (a ∪ b))⊥ ⊥ ∩
a) ∪ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∩
a⊥ )) ∪ ((a⊥ ∩ (a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a))) |
| 11 | | ax-a3 32 |
. . . 4
((((a⊥ ∩
(a ∪ b))⊥ ⊥ ∩
a) ∪ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∩
a⊥ )) ∪ ((a⊥ ∩ (a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a))) = (((a⊥ ∩ (a ∪ b))⊥ ⊥ ∩
a) ∪ (((a⊥ ∩ (a ∪ b))⊥ ⊥ ∩
a⊥ ) ∪ ((a⊥ ∩ (a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a)))) |
| 12 | | ax-a2 31 |
. . . . 5
(((a⊥ ∩
(a ∪ b))⊥ ⊥ ∩
a) ∪ (((a⊥ ∩ (a ∪ b))⊥ ⊥ ∩
a⊥ ) ∪ ((a⊥ ∩ (a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a)))) = ((((a⊥ ∩ (a ∪ b))⊥ ⊥ ∩
a⊥ ) ∪ ((a⊥ ∩ (a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a))) ∪ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∩
a)) |
| 13 | | ax-a1 30 |
. . . . . . . . . . . . 13
(a⊥ ∩ (a ∪ b)) =
(a⊥ ∩ (a ∪ b))⊥
⊥ |
| 14 | 13 | ran 78 |
. . . . . . . . . . . 12
((a⊥ ∩
(a ∪ b)) ∩ a⊥ ) = ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∩
a⊥ ) |
| 15 | 14 | ax-r1 35 |
. . . . . . . . . . 11
((a⊥ ∩
(a ∪ b))⊥ ⊥ ∩
a⊥ ) = ((a⊥ ∩ (a ∪ b))
∩ a⊥
) |
| 16 | | an32 83 |
. . . . . . . . . . . 12
((a⊥ ∩
(a ∪ b)) ∩ a⊥ ) = ((a⊥ ∩ a⊥ ) ∩ (a ∪ b)) |
| 17 | | anidm 111 |
. . . . . . . . . . . . 13
(a⊥ ∩ a⊥ ) = a⊥ |
| 18 | 17 | ran 78 |
. . . . . . . . . . . 12
((a⊥ ∩ a⊥ ) ∩ (a ∪ b)) =
(a⊥ ∩ (a ∪ b)) |
| 19 | 16, 18 | ax-r2 36 |
. . . . . . . . . . 11
((a⊥ ∩
(a ∪ b)) ∩ a⊥ ) = (a⊥ ∩ (a ∪ b)) |
| 20 | 15, 19 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∩
(a ∪ b))⊥ ⊥ ∩
a⊥ ) = (a⊥ ∩ (a ∪ b)) |
| 21 | 13 | ax-r5 38 |
. . . . . . . . . . . . 13
((a⊥ ∩
(a ∪ b)) ∪ a) =
((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a) |
| 22 | 7, 21 | 2an 79 |
. . . . . . . . . . . 12
((a ∪ (a ∪ b)⊥ ) ∩ ((a⊥ ∩ (a ∪ b))
∪ a)) = ((a⊥ ∩ (a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a)) |
| 23 | 22 | ax-r1 35 |
. . . . . . . . . . 11
((a⊥ ∩
(a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a)) = ((a ∪ (a ∪
b)⊥ ) ∩ ((a⊥ ∩ (a ∪ b))
∪ a)) |
| 24 | | ax-a2 31 |
. . . . . . . . . . . . . 14
((a⊥ ∩
(a ∪ b)) ∪ a) =
(a ∪ (a⊥ ∩ (a ∪ b))) |
| 25 | | oml 445 |
. . . . . . . . . . . . . 14
(a ∪ (a⊥ ∩ (a ∪ b))) =
(a ∪ b) |
| 26 | 24, 25 | ax-r2 36 |
. . . . . . . . . . . . 13
((a⊥ ∩
(a ∪ b)) ∪ a) =
(a ∪ b) |
| 27 | 26 | lan 77 |
. . . . . . . . . . . 12
((a ∪ (a ∪ b)⊥ ) ∩ ((a⊥ ∩ (a ∪ b))
∪ a)) = ((a ∪ (a ∪
b)⊥ ) ∩ (a ∪ b)) |
| 28 | | comorr 184 |
. . . . . . . . . . . . . 14
a C (a ∪ b) |
| 29 | 28 | comcom2 183 |
. . . . . . . . . . . . . 14
a C (a ∪ b)⊥ |
| 30 | 28, 29 | fh2r 474 |
. . . . . . . . . . . . 13
((a ∪ (a ∪ b)⊥ ) ∩ (a ∪ b)) =
((a ∩ (a ∪ b))
∪ ((a ∪ b)⊥ ∩ (a ∪ b))) |
| 31 | | anabs 121 |
. . . . . . . . . . . . . . 15
(a ∩ (a ∪ b)) =
a |
| 32 | | ancom 74 |
. . . . . . . . . . . . . . . 16
((a ∪ b)⊥ ∩ (a ∪ b)) =
((a ∪ b) ∩ (a
∪ b)⊥
) |
| 33 | | dff 101 |
. . . . . . . . . . . . . . . . 17
0 = ((a ∪ b) ∩ (a
∪ b)⊥
) |
| 34 | 33 | ax-r1 35 |
. . . . . . . . . . . . . . . 16
((a ∪ b) ∩ (a
∪ b)⊥ ) =
0 |
| 35 | 32, 34 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((a ∪ b)⊥ ∩ (a ∪ b)) =
0 |
| 36 | 31, 35 | 2or 72 |
. . . . . . . . . . . . . 14
((a ∩ (a ∪ b))
∪ ((a ∪ b)⊥ ∩ (a ∪ b))) =
(a ∪ 0) |
| 37 | | or0 102 |
. . . . . . . . . . . . . 14
(a ∪ 0) = a |
| 38 | 36, 37 | ax-r2 36 |
. . . . . . . . . . . . 13
((a ∩ (a ∪ b))
∪ ((a ∪ b)⊥ ∩ (a ∪ b))) =
a |
| 39 | 30, 38 | ax-r2 36 |
. . . . . . . . . . . 12
((a ∪ (a ∪ b)⊥ ) ∩ (a ∪ b)) =
a |
| 40 | 27, 39 | ax-r2 36 |
. . . . . . . . . . 11
((a ∪ (a ∪ b)⊥ ) ∩ ((a⊥ ∩ (a ∪ b))
∪ a)) = a |
| 41 | 23, 40 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∩
(a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a)) = a |
| 42 | 20, 41 | 2or 72 |
. . . . . . . . 9
(((a⊥ ∩
(a ∪ b))⊥ ⊥ ∩
a⊥ ) ∪ ((a⊥ ∩ (a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a))) = ((a⊥ ∩ (a ∪ b))
∪ a) |
| 43 | 42, 24 | ax-r2 36 |
. . . . . . . 8
(((a⊥ ∩
(a ∪ b))⊥ ⊥ ∩
a⊥ ) ∪ ((a⊥ ∩ (a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a))) = (a ∪ (a⊥ ∩ (a ∪ b))) |
| 44 | 43, 25 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∩
(a ∪ b))⊥ ⊥ ∩
a⊥ ) ∪ ((a⊥ ∩ (a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a))) = (a ∪ b) |
| 45 | | ancom 74 |
. . . . . . . 8
((a⊥ ∩
(a ∪ b))⊥ ⊥ ∩
a) = (a
∩ (a⊥ ∩ (a ∪ b))⊥ ⊥
) |
| 46 | 13 | lan 77 |
. . . . . . . . . 10
(a ∩ (a⊥ ∩ (a ∪ b))) =
(a ∩ (a⊥ ∩ (a ∪ b))⊥ ⊥
) |
| 47 | 46 | ax-r1 35 |
. . . . . . . . 9
(a ∩ (a⊥ ∩ (a ∪ b))⊥ ⊥ ) =
(a ∩ (a⊥ ∩ (a ∪ b))) |
| 48 | | anass 76 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ (a ∪ b)) =
(a ∩ (a⊥ ∩ (a ∪ b))) |
| 49 | 48 | ax-r1 35 |
. . . . . . . . . 10
(a ∩ (a⊥ ∩ (a ∪ b))) =
((a ∩ a⊥ ) ∩ (a ∪ b)) |
| 50 | | ancom 74 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ (a ∪ b)) =
((a ∪ b) ∩ (a
∩ a⊥
)) |
| 51 | | dff 101 |
. . . . . . . . . . . . . 14
0 = (a ∩ a⊥ ) |
| 52 | 51 | lan 77 |
. . . . . . . . . . . . 13
((a ∪ b) ∩ 0) = ((a ∪ b) ∩
(a ∩ a⊥ )) |
| 53 | 52 | ax-r1 35 |
. . . . . . . . . . . 12
((a ∪ b) ∩ (a
∩ a⊥ )) = ((a ∪ b) ∩
0) |
| 54 | | an0 108 |
. . . . . . . . . . . 12
((a ∪ b) ∩ 0) = 0 |
| 55 | 53, 54 | ax-r2 36 |
. . . . . . . . . . 11
((a ∪ b) ∩ (a
∩ a⊥ )) =
0 |
| 56 | 50, 55 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ (a ∪ b)) =
0 |
| 57 | 49, 56 | ax-r2 36 |
. . . . . . . . 9
(a ∩ (a⊥ ∩ (a ∪ b))) =
0 |
| 58 | 47, 57 | ax-r2 36 |
. . . . . . . 8
(a ∩ (a⊥ ∩ (a ∪ b))⊥ ⊥ ) =
0 |
| 59 | 45, 58 | ax-r2 36 |
. . . . . . 7
((a⊥ ∩
(a ∪ b))⊥ ⊥ ∩
a) = 0 |
| 60 | 44, 59 | 2or 72 |
. . . . . 6
((((a⊥ ∩
(a ∪ b))⊥ ⊥ ∩
a⊥ ) ∪ ((a⊥ ∩ (a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a))) ∪ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∩
a)) = ((a ∪ b) ∪
0) |
| 61 | | or0 102 |
. . . . . 6
((a ∪ b) ∪ 0) = (a
∪ b) |
| 62 | 60, 61 | ax-r2 36 |
. . . . 5
((((a⊥ ∩
(a ∪ b))⊥ ⊥ ∩
a⊥ ) ∪ ((a⊥ ∩ (a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a))) ∪ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∩
a)) = (a ∪ b) |
| 63 | 12, 62 | ax-r2 36 |
. . . 4
(((a⊥ ∩
(a ∪ b))⊥ ⊥ ∩
a) ∪ (((a⊥ ∩ (a ∪ b))⊥ ⊥ ∩
a⊥ ) ∪ ((a⊥ ∩ (a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a)))) = (a ∪ b) |
| 64 | 11, 63 | ax-r2 36 |
. . 3
((((a⊥ ∩
(a ∪ b))⊥ ⊥ ∩
a) ∪ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∩
a⊥ )) ∪ ((a⊥ ∩ (a ∪ b))⊥ ∩ ((a⊥ ∩ (a ∪ b))⊥ ⊥ ∪
a))) = (a ∪ b) |
| 65 | 10, 64 | ax-r2 36 |
. 2
((a⊥ ∩
(a ∪ b))⊥ →3 a) = (a ∪
b) |
| 66 | 9, 65 | ax-r2 36 |
1
((a ∪ (a⊥ ∩ b⊥ )) →3 a) = (a ∪
b) |