Proof of Theorem ud4lem3a
Step | Hyp | Ref
| Expression |
1 | | anass 76 |
. . 3
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (a
∪ b)) = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (((a ∩ b⊥ ) ∪ b) ∩ (a
∪ b))) |
2 | | lea 160 |
. . . . . 6
(a ∩ b⊥ ) ≤ a |
3 | 2 | leror 152 |
. . . . 5
((a ∩ b⊥ ) ∪ b) ≤ (a ∪
b) |
4 | 3 | df2le2 136 |
. . . 4
(((a ∩ b⊥ ) ∪ b) ∩ (a
∪ b)) = ((a ∩ b⊥ ) ∪ b) |
5 | 4 | lan 77 |
. . 3
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (((a ∩ b⊥ ) ∪ b) ∩ (a
∪ b))) = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) |
6 | 1, 5 | ax-r2 36 |
. 2
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (a
∪ b)) = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) |
7 | | ud4lem0c 280 |
. . 3
(a →4 b)⊥ = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) |
8 | 7 | ran 78 |
. 2
((a →4 b)⊥ ∩ (a ∪ b)) =
((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (a
∪ b)) |
9 | 6, 8, 7 | 3tr1 63 |
1
((a →4 b)⊥ ∩ (a ∪ b)) =
(a →4 b)⊥ |