Proof of Theorem ud4lem3
| Step | Hyp | Ref
| Expression |
| 1 | | df-i4 47 |
. 2
((a →4 b) →4 (a ∪ b)) =
((((a →4 b) ∩ (a
∪ b)) ∪ ((a →4 b)⊥ ∩ (a ∪ b)))
∪ (((a →4 b)⊥ ∪ (a ∪ b))
∩ (a ∪ b)⊥ )) |
| 2 | | ud4lem3a 583 |
. . . . . 6
((a →4 b)⊥ ∩ (a ∪ b)) =
(a →4 b)⊥ |
| 3 | 2 | lor 70 |
. . . . 5
(((a →4 b) ∩ (a
∪ b)) ∪ ((a →4 b)⊥ ∩ (a ∪ b))) =
(((a →4 b) ∩ (a
∪ b)) ∪ (a →4 b)⊥ ) |
| 4 | | comid 187 |
. . . . . . . 8
(a →4 b) C (a
→4 b) |
| 5 | 4 | comcom2 183 |
. . . . . . 7
(a →4 b) C (a
→4 b)⊥ |
| 6 | | df-i4 47 |
. . . . . . . 8
(a →4 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
| 7 | | comor1 461 |
. . . . . . . . . . . 12
(a ∪ b) C a |
| 8 | | comor2 462 |
. . . . . . . . . . . 12
(a ∪ b) C b |
| 9 | 7, 8 | com2an 484 |
. . . . . . . . . . 11
(a ∪ b) C (a
∩ b) |
| 10 | 7 | comcom2 183 |
. . . . . . . . . . . 12
(a ∪ b) C a⊥ |
| 11 | 10, 8 | com2an 484 |
. . . . . . . . . . 11
(a ∪ b) C (a⊥ ∩ b) |
| 12 | 9, 11 | com2or 483 |
. . . . . . . . . 10
(a ∪ b) C ((a
∩ b) ∪ (a⊥ ∩ b)) |
| 13 | 10, 8 | com2or 483 |
. . . . . . . . . . 11
(a ∪ b) C (a⊥ ∪ b) |
| 14 | 8 | comcom2 183 |
. . . . . . . . . . 11
(a ∪ b) C b⊥ |
| 15 | 13, 14 | com2an 484 |
. . . . . . . . . 10
(a ∪ b) C ((a⊥ ∪ b) ∩ b⊥ ) |
| 16 | 12, 15 | com2or 483 |
. . . . . . . . 9
(a ∪ b) C (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
| 17 | 16 | comcom 453 |
. . . . . . . 8
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) C (a ∪ b) |
| 18 | 6, 17 | bctr 181 |
. . . . . . 7
(a →4 b) C (a
∪ b) |
| 19 | 5, 18 | fh4r 476 |
. . . . . 6
(((a →4 b) ∩ (a
∪ b)) ∪ (a →4 b)⊥ ) = (((a →4 b) ∪ (a
→4 b)⊥ )
∩ ((a ∪ b) ∪ (a
→4 b)⊥
)) |
| 20 | | ancom 74 |
. . . . . . 7
(((a →4 b) ∪ (a
→4 b)⊥ )
∩ ((a ∪ b) ∪ (a
→4 b)⊥ ))
= (((a ∪ b) ∪ (a
→4 b)⊥ )
∩ ((a →4 b) ∪ (a
→4 b)⊥
)) |
| 21 | | ax-a2 31 |
. . . . . . . . . 10
((a ∪ b) ∪ (a
→4 b)⊥ ) =
((a →4 b)⊥ ∪ (a ∪ b)) |
| 22 | | ud4lem3b 584 |
. . . . . . . . . 10
((a →4 b)⊥ ∪ (a ∪ b)) =
(a ∪ b) |
| 23 | 21, 22 | ax-r2 36 |
. . . . . . . . 9
((a ∪ b) ∪ (a
→4 b)⊥ ) =
(a ∪ b) |
| 24 | | df-t 41 |
. . . . . . . . . 10
1 = ((a →4 b) ∪ (a
→4 b)⊥
) |
| 25 | 24 | ax-r1 35 |
. . . . . . . . 9
((a →4 b) ∪ (a
→4 b)⊥ ) =
1 |
| 26 | 23, 25 | 2an 79 |
. . . . . . . 8
(((a ∪ b) ∪ (a
→4 b)⊥ )
∩ ((a →4 b) ∪ (a
→4 b)⊥ ))
= ((a ∪ b) ∩ 1) |
| 27 | | an1 106 |
. . . . . . . 8
((a ∪ b) ∩ 1) = (a
∪ b) |
| 28 | 26, 27 | ax-r2 36 |
. . . . . . 7
(((a ∪ b) ∪ (a
→4 b)⊥ )
∩ ((a →4 b) ∪ (a
→4 b)⊥ ))
= (a ∪ b) |
| 29 | 20, 28 | ax-r2 36 |
. . . . . 6
(((a →4 b) ∪ (a
→4 b)⊥ )
∩ ((a ∪ b) ∪ (a
→4 b)⊥ ))
= (a ∪ b) |
| 30 | 19, 29 | ax-r2 36 |
. . . . 5
(((a →4 b) ∩ (a
∪ b)) ∪ (a →4 b)⊥ ) = (a ∪ b) |
| 31 | 3, 30 | ax-r2 36 |
. . . 4
(((a →4 b) ∩ (a
∪ b)) ∪ ((a →4 b)⊥ ∩ (a ∪ b))) =
(a ∪ b) |
| 32 | 22 | ran 78 |
. . . . 5
(((a →4 b)⊥ ∪ (a ∪ b))
∩ (a ∪ b)⊥ ) = ((a ∪ b) ∩
(a ∪ b)⊥ ) |
| 33 | | dff 101 |
. . . . . 6
0 = ((a ∪ b) ∩ (a
∪ b)⊥
) |
| 34 | 33 | ax-r1 35 |
. . . . 5
((a ∪ b) ∩ (a
∪ b)⊥ ) =
0 |
| 35 | 32, 34 | ax-r2 36 |
. . . 4
(((a →4 b)⊥ ∪ (a ∪ b))
∩ (a ∪ b)⊥ ) = 0 |
| 36 | 31, 35 | 2or 72 |
. . 3
((((a →4 b) ∩ (a
∪ b)) ∪ ((a →4 b)⊥ ∩ (a ∪ b)))
∪ (((a →4 b)⊥ ∪ (a ∪ b))
∩ (a ∪ b)⊥ )) = ((a ∪ b) ∪
0) |
| 37 | | or0 102 |
. . 3
((a ∪ b) ∪ 0) = (a
∪ b) |
| 38 | 36, 37 | ax-r2 36 |
. 2
((((a →4 b) ∩ (a
∪ b)) ∪ ((a →4 b)⊥ ∩ (a ∪ b)))
∪ (((a →4 b)⊥ ∪ (a ∪ b))
∩ (a ∪ b)⊥ )) = (a ∪ b) |
| 39 | 1, 38 | ax-r2 36 |
1
((a →4 b) →4 (a ∪ b)) =
(a ∪ b) |