Proof of Theorem ud4lem2
| Step | Hyp | Ref
| Expression |
| 1 | | df-i4 47 |
. 2
((a ∪ (a⊥ ∩ b⊥ )) →4 a) = ((((a ∪
(a⊥ ∩ b⊥ )) ∩ a) ∪ ((a
∪ (a⊥ ∩ b⊥ ))⊥ ∩
a)) ∪ (((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a) ∩ a⊥ )) |
| 2 | | ancom 74 |
. . . . . . 7
((a ∪ (a⊥ ∩ b⊥ )) ∩ a) = (a ∩
(a ∪ (a⊥ ∩ b⊥ ))) |
| 3 | | anabs 121 |
. . . . . . 7
(a ∩ (a ∪ (a⊥ ∩ b⊥ ))) = a |
| 4 | 2, 3 | ax-r2 36 |
. . . . . 6
((a ∪ (a⊥ ∩ b⊥ )) ∩ a) = a |
| 5 | | oran 87 |
. . . . . . . . 9
(a ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∩ (a⊥ ∩ b⊥ )⊥
)⊥ |
| 6 | 5 | con2 67 |
. . . . . . . 8
(a ∪ (a⊥ ∩ b⊥ ))⊥ = (a⊥ ∩ (a⊥ ∩ b⊥ )⊥
) |
| 7 | 6 | ran 78 |
. . . . . . 7
((a ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a) = ((a⊥ ∩ (a⊥ ∩ b⊥ )⊥ ) ∩
a) |
| 8 | | ancom 74 |
. . . . . . . 8
((a⊥ ∩
(a⊥ ∩ b⊥ )⊥ ) ∩
a) = (a
∩ (a⊥ ∩ (a⊥ ∩ b⊥ )⊥
)) |
| 9 | | anass 76 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ (a⊥ ∩ b⊥ )⊥ ) =
(a ∩ (a⊥ ∩ (a⊥ ∩ b⊥ )⊥
)) |
| 10 | 9 | ax-r1 35 |
. . . . . . . . 9
(a ∩ (a⊥ ∩ (a⊥ ∩ b⊥ )⊥ )) =
((a ∩ a⊥ ) ∩ (a⊥ ∩ b⊥ )⊥
) |
| 11 | | ancom 74 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ (a⊥ ∩ b⊥ )⊥ ) =
((a⊥ ∩ b⊥ )⊥ ∩
(a ∩ a⊥ )) |
| 12 | | dff 101 |
. . . . . . . . . . . . 13
0 = (a ∩ a⊥ ) |
| 13 | 12 | lan 77 |
. . . . . . . . . . . 12
((a⊥ ∩ b⊥ )⊥ ∩ 0) =
((a⊥ ∩ b⊥ )⊥ ∩
(a ∩ a⊥ )) |
| 14 | 13 | ax-r1 35 |
. . . . . . . . . . 11
((a⊥ ∩ b⊥ )⊥ ∩
(a ∩ a⊥ )) = ((a⊥ ∩ b⊥ )⊥ ∩
0) |
| 15 | | an0 108 |
. . . . . . . . . . 11
((a⊥ ∩ b⊥ )⊥ ∩ 0) =
0 |
| 16 | 14, 15 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ )⊥ ∩
(a ∩ a⊥ )) = 0 |
| 17 | 11, 16 | ax-r2 36 |
. . . . . . . . 9
((a ∩ a⊥ ) ∩ (a⊥ ∩ b⊥ )⊥ ) =
0 |
| 18 | 10, 17 | ax-r2 36 |
. . . . . . . 8
(a ∩ (a⊥ ∩ (a⊥ ∩ b⊥ )⊥ )) =
0 |
| 19 | 8, 18 | ax-r2 36 |
. . . . . . 7
((a⊥ ∩
(a⊥ ∩ b⊥ )⊥ ) ∩
a) = 0 |
| 20 | 7, 19 | ax-r2 36 |
. . . . . 6
((a ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a) = 0 |
| 21 | 4, 20 | 2or 72 |
. . . . 5
(((a ∪ (a⊥ ∩ b⊥ )) ∩ a) ∪ ((a
∪ (a⊥ ∩ b⊥ ))⊥ ∩
a)) = (a ∪ 0) |
| 22 | | or0 102 |
. . . . 5
(a ∪ 0) = a |
| 23 | 21, 22 | ax-r2 36 |
. . . 4
(((a ∪ (a⊥ ∩ b⊥ )) ∩ a) ∪ ((a
∪ (a⊥ ∩ b⊥ ))⊥ ∩
a)) = a |
| 24 | | ancom 74 |
. . . . 5
(((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a) ∩ a⊥ ) = (a⊥ ∩ ((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a)) |
| 25 | | oran 87 |
. . . . . . . . . . . . 13
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
| 26 | 25 | ax-r1 35 |
. . . . . . . . . . . 12
(a⊥ ∩ b⊥ )⊥ = (a ∪ b) |
| 27 | 26 | con3 68 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
| 28 | 27 | lor 70 |
. . . . . . . . . 10
(a ∪ (a⊥ ∩ b⊥ )) = (a ∪ (a ∪
b)⊥ ) |
| 29 | | anor2 89 |
. . . . . . . . . . . 12
(a⊥ ∩ (a ∪ b)) =
(a ∪ (a ∪ b)⊥
)⊥ |
| 30 | 29 | ax-r1 35 |
. . . . . . . . . . 11
(a ∪ (a ∪ b)⊥ )⊥ = (a⊥ ∩ (a ∪ b)) |
| 31 | 30 | con3 68 |
. . . . . . . . . 10
(a ∪ (a ∪ b)⊥ ) = (a⊥ ∩ (a ∪ b))⊥ |
| 32 | 28, 31 | ax-r2 36 |
. . . . . . . . 9
(a ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∩ (a ∪ b))⊥ |
| 33 | 32 | con2 67 |
. . . . . . . 8
(a ∪ (a⊥ ∩ b⊥ ))⊥ = (a⊥ ∩ (a ∪ b)) |
| 34 | 33 | ax-r5 38 |
. . . . . . 7
((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a) = ((a⊥ ∩ (a ∪ b))
∪ a) |
| 35 | | comid 187 |
. . . . . . . . . 10
a C a |
| 36 | 35 | comcom2 183 |
. . . . . . . . 9
a C a⊥ |
| 37 | | comorr 184 |
. . . . . . . . 9
a C (a ∪ b) |
| 38 | 36, 37 | fh3r 475 |
. . . . . . . 8
((a⊥ ∩
(a ∪ b)) ∪ a) =
((a⊥ ∪ a) ∩ ((a
∪ b) ∪ a)) |
| 39 | | ancom 74 |
. . . . . . . . . 10
((a⊥ ∪ a) ∩ ((a
∪ b) ∪ a)) = (((a ∪
b) ∪ a) ∩ (a⊥ ∪ a)) |
| 40 | | or32 82 |
. . . . . . . . . . . 12
((a ∪ b) ∪ a) =
((a ∪ a) ∪ b) |
| 41 | | oridm 110 |
. . . . . . . . . . . . 13
(a ∪ a) = a |
| 42 | 41 | ax-r5 38 |
. . . . . . . . . . . 12
((a ∪ a) ∪ b) =
(a ∪ b) |
| 43 | 40, 42 | ax-r2 36 |
. . . . . . . . . . 11
((a ∪ b) ∪ a) =
(a ∪ b) |
| 44 | | df-t 41 |
. . . . . . . . . . . . 13
1 = (a ∪ a⊥ ) |
| 45 | | ax-a2 31 |
. . . . . . . . . . . . 13
(a ∪ a⊥ ) = (a⊥ ∪ a) |
| 46 | 44, 45 | ax-r2 36 |
. . . . . . . . . . . 12
1 = (a⊥ ∪
a) |
| 47 | 46 | ax-r1 35 |
. . . . . . . . . . 11
(a⊥ ∪ a) = 1 |
| 48 | 43, 47 | 2an 79 |
. . . . . . . . . 10
(((a ∪ b) ∪ a)
∩ (a⊥ ∪ a)) = ((a ∪
b) ∩ 1) |
| 49 | 39, 48 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∪ a) ∩ ((a
∪ b) ∪ a)) = ((a ∪
b) ∩ 1) |
| 50 | | an1 106 |
. . . . . . . . 9
((a ∪ b) ∩ 1) = (a
∪ b) |
| 51 | 49, 50 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∪ a) ∩ ((a
∪ b) ∪ a)) = (a ∪
b) |
| 52 | 38, 51 | ax-r2 36 |
. . . . . . 7
((a⊥ ∩
(a ∪ b)) ∪ a) =
(a ∪ b) |
| 53 | 34, 52 | ax-r2 36 |
. . . . . 6
((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a) = (a
∪ b) |
| 54 | 53 | lan 77 |
. . . . 5
(a⊥ ∩
((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a)) = (a⊥ ∩ (a ∪ b)) |
| 55 | 24, 54 | ax-r2 36 |
. . . 4
(((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a) ∩ a⊥ ) = (a⊥ ∩ (a ∪ b)) |
| 56 | 23, 55 | 2or 72 |
. . 3
((((a ∪ (a⊥ ∩ b⊥ )) ∩ a) ∪ ((a
∪ (a⊥ ∩ b⊥ ))⊥ ∩
a)) ∪ (((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a) ∩ a⊥ )) = (a ∪ (a⊥ ∩ (a ∪ b))) |
| 57 | | oml 445 |
. . 3
(a ∪ (a⊥ ∩ (a ∪ b))) =
(a ∪ b) |
| 58 | 56, 57 | ax-r2 36 |
. 2
((((a ∪ (a⊥ ∩ b⊥ )) ∩ a) ∪ ((a
∪ (a⊥ ∩ b⊥ ))⊥ ∩
a)) ∪ (((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a) ∩ a⊥ )) = (a ∪ b) |
| 59 | 1, 58 | ax-r2 36 |
1
((a ∪ (a⊥ ∩ b⊥ )) →4 a) = (a ∪
b) |