Proof of Theorem ud4lem3b
| Step | Hyp | Ref
| Expression |
| 1 | | ud4lem0c 280 |
. . 3
(a →4 b)⊥ = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) |
| 2 | 1 | ax-r5 38 |
. 2
((a →4 b)⊥ ∪ (a ∪ b)) =
((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∪ (a
∪ b)) |
| 3 | | comor1 461 |
. . . . . . 7
(a ∪ b) C a |
| 4 | 3 | comcom2 183 |
. . . . . 6
(a ∪ b) C a⊥ |
| 5 | | comor2 462 |
. . . . . . 7
(a ∪ b) C b |
| 6 | 5 | comcom2 183 |
. . . . . 6
(a ∪ b) C b⊥ |
| 7 | 4, 6 | com2or 483 |
. . . . 5
(a ∪ b) C (a⊥ ∪ b⊥ ) |
| 8 | 3, 6 | com2or 483 |
. . . . 5
(a ∪ b) C (a
∪ b⊥
) |
| 9 | 7, 8 | com2an 484 |
. . . 4
(a ∪ b) C ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
| 10 | 3, 6 | com2an 484 |
. . . . 5
(a ∪ b) C (a
∩ b⊥
) |
| 11 | 10, 5 | com2or 483 |
. . . 4
(a ∪ b) C ((a
∩ b⊥ ) ∪ b) |
| 12 | 9, 11 | fh3r 475 |
. . 3
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∪ (a
∪ b)) = ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∪ (a ∪ b))
∩ (((a ∩ b⊥ ) ∪ b) ∪ (a
∪ b))) |
| 13 | 7, 8 | fh3r 475 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∪ (a ∪ b)) =
(((a⊥ ∪ b⊥ ) ∪ (a ∪ b))
∩ ((a ∪ b⊥ ) ∪ (a ∪ b))) |
| 14 | | ax-a2 31 |
. . . . . . . . 9
((a⊥ ∪ b⊥ ) ∪ (a ∪ b)) =
((a ∪ b) ∪ (a⊥ ∪ b⊥ )) |
| 15 | | or4 84 |
. . . . . . . . . 10
((a ∪ b) ∪ (a⊥ ∪ b⊥ )) = ((a ∪ a⊥ ) ∪ (b ∪ b⊥ )) |
| 16 | | df-t 41 |
. . . . . . . . . . . . 13
1 = (b ∪ b⊥ ) |
| 17 | 16 | lor 70 |
. . . . . . . . . . . 12
((a ∪ a⊥ ) ∪ 1) = ((a ∪ a⊥ ) ∪ (b ∪ b⊥ )) |
| 18 | 17 | ax-r1 35 |
. . . . . . . . . . 11
((a ∪ a⊥ ) ∪ (b ∪ b⊥ )) = ((a ∪ a⊥ ) ∪ 1) |
| 19 | | or1 104 |
. . . . . . . . . . 11
((a ∪ a⊥ ) ∪ 1) = 1 |
| 20 | 18, 19 | ax-r2 36 |
. . . . . . . . . 10
((a ∪ a⊥ ) ∪ (b ∪ b⊥ )) = 1 |
| 21 | 15, 20 | ax-r2 36 |
. . . . . . . . 9
((a ∪ b) ∪ (a⊥ ∪ b⊥ )) = 1 |
| 22 | 14, 21 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∪ b⊥ ) ∪ (a ∪ b)) =
1 |
| 23 | | ax-a2 31 |
. . . . . . . . 9
((a ∪ b⊥ ) ∪ (a ∪ b)) =
((a ∪ b) ∪ (a
∪ b⊥
)) |
| 24 | | or4 84 |
. . . . . . . . . 10
((a ∪ b) ∪ (a
∪ b⊥ )) = ((a ∪ a) ∪
(b ∪ b⊥ )) |
| 25 | 16 | lor 70 |
. . . . . . . . . . . 12
((a ∪ a) ∪ 1) = ((a ∪ a) ∪
(b ∪ b⊥ )) |
| 26 | 25 | ax-r1 35 |
. . . . . . . . . . 11
((a ∪ a) ∪ (b
∪ b⊥ )) = ((a ∪ a) ∪
1) |
| 27 | | or1 104 |
. . . . . . . . . . 11
((a ∪ a) ∪ 1) = 1 |
| 28 | 26, 27 | ax-r2 36 |
. . . . . . . . . 10
((a ∪ a) ∪ (b
∪ b⊥ )) =
1 |
| 29 | 24, 28 | ax-r2 36 |
. . . . . . . . 9
((a ∪ b) ∪ (a
∪ b⊥ )) =
1 |
| 30 | 23, 29 | ax-r2 36 |
. . . . . . . 8
((a ∪ b⊥ ) ∪ (a ∪ b)) =
1 |
| 31 | 22, 30 | 2an 79 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∪ (a ∪ b))
∩ ((a ∪ b⊥ ) ∪ (a ∪ b))) =
(1 ∩ 1) |
| 32 | 13, 31 | ax-r2 36 |
. . . . . 6
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∪ (a ∪ b)) = (1
∩ 1) |
| 33 | | an1 106 |
. . . . . 6
(1 ∩ 1) = 1 |
| 34 | 32, 33 | ax-r2 36 |
. . . . 5
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∪ (a ∪ b)) =
1 |
| 35 | | lea 160 |
. . . . . . 7
(a ∩ b⊥ ) ≤ a |
| 36 | 35 | leror 152 |
. . . . . 6
((a ∩ b⊥ ) ∪ b) ≤ (a ∪
b) |
| 37 | 36 | df-le2 131 |
. . . . 5
(((a ∩ b⊥ ) ∪ b) ∪ (a
∪ b)) = (a ∪ b) |
| 38 | 34, 37 | 2an 79 |
. . . 4
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∪ (a ∪ b))
∩ (((a ∩ b⊥ ) ∪ b) ∪ (a
∪ b))) = (1 ∩ (a ∪ b)) |
| 39 | | ancom 74 |
. . . . 5
(1 ∩ (a ∪ b)) = ((a ∪
b) ∩ 1) |
| 40 | | an1 106 |
. . . . 5
((a ∪ b) ∩ 1) = (a
∪ b) |
| 41 | 39, 40 | ax-r2 36 |
. . . 4
(1 ∩ (a ∪ b)) = (a ∪
b) |
| 42 | 38, 41 | ax-r2 36 |
. . 3
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∪ (a ∪ b))
∩ (((a ∩ b⊥ ) ∪ b) ∪ (a
∪ b))) = (a ∪ b) |
| 43 | 12, 42 | ax-r2 36 |
. 2
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∪ (a
∪ b)) = (a ∪ b) |
| 44 | 2, 43 | ax-r2 36 |
1
((a →4 b)⊥ ∪ (a ∪ b)) =
(a ∪ b) |