Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > vneulem7 | GIF version |
Description: Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by NM, 31-Mar-2011.) |
Ref | Expression |
---|---|
vneulem6.1 | ((a ∪ b) ∩ (c ∪ d)) = 0 |
Ref | Expression |
---|---|
vneulem7 | ((c ∩ a) ∪ (b ∪ d)) = (b ∪ d) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leao2 163 | . . . . . 6 (c ∩ a) ≤ (a ∪ b) | |
2 | leao1 162 | . . . . . 6 (c ∩ a) ≤ (c ∪ d) | |
3 | 1, 2 | ler2an 173 | . . . . 5 (c ∩ a) ≤ ((a ∪ b) ∩ (c ∪ d)) |
4 | vneulem6.1 | . . . . 5 ((a ∪ b) ∩ (c ∪ d)) = 0 | |
5 | 3, 4 | lbtr 139 | . . . 4 (c ∩ a) ≤ 0 |
6 | le0 147 | . . . 4 0 ≤ (c ∩ a) | |
7 | 5, 6 | lebi 145 | . . 3 (c ∩ a) = 0 |
8 | 7 | ror 71 | . 2 ((c ∩ a) ∪ (b ∪ d)) = (0 ∪ (b ∪ d)) |
9 | or0r 103 | . 2 (0 ∪ (b ∪ d)) = (b ∪ d) | |
10 | 8, 9 | tr 62 | 1 ((c ∩ a) ∪ (b ∪ d)) = (b ∪ d) |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 ∩ wa 7 0wf 9 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: vneulem8 1138 |
Copyright terms: Public domain | W3C validator |