Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > leao2 | GIF version |
Description: L.e. absorption. (Contributed by NM, 8-Jul-2000.) |
Ref | Expression |
---|---|
leao2 | (b ∩ a) ≤ (a ∪ c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lear 161 | . 2 (b ∩ a) ≤ a | |
2 | leo 158 | . 2 a ≤ (a ∪ c) | |
3 | 1, 2 | letr 137 | 1 (b ∩ a) ≤ (a ∪ c) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-le1 130 df-le2 131 |
This theorem is referenced by: bi4 840 negantlem10 861 mhlem1 877 mhlem2 878 mh 879 mhcor1 888 lem4.6.7 1103 vneulem6 1136 vneulem7 1137 vneulemexp 1148 dp32 1196 |
Copyright terms: Public domain | W3C validator |