Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wleao | GIF version |
Description: Relation between two methods of expressing "less than or equal to". (Contributed by NM, 27-Sep-1997.) |
Ref | Expression |
---|---|
wleao.1 | ((c ∩ b) ≡ a) = 1 |
Ref | Expression |
---|---|
wleao | ((a ∪ b) ≡ b) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wa2 192 | . . 3 ((a ∪ b) ≡ (b ∪ a)) = 1 | |
2 | wleao.1 | . . . . . 6 ((c ∩ b) ≡ a) = 1 | |
3 | 2 | wr1 197 | . . . . 5 (a ≡ (c ∩ b)) = 1 |
4 | wancom 203 | . . . . . 6 ((b ∩ c) ≡ (c ∩ b)) = 1 | |
5 | 4 | wr1 197 | . . . . 5 ((c ∩ b) ≡ (b ∩ c)) = 1 |
6 | 3, 5 | wr2 371 | . . . 4 (a ≡ (b ∩ c)) = 1 |
7 | 6 | wlor 368 | . . 3 ((b ∪ a) ≡ (b ∪ (b ∩ c))) = 1 |
8 | 1, 7 | wr2 371 | . 2 ((a ∪ b) ≡ (b ∪ (b ∩ c))) = 1 |
9 | wa5b 200 | . 2 ((b ∪ (b ∩ c)) ≡ b) = 1 | |
10 | 8, 9 | wr2 371 | 1 ((a ∪ b) ≡ b) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ≡ tb 5 ∪ wo 6 ∩ wa 7 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: wdf2le1 385 |
Copyright terms: Public domain | W3C validator |