Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wleoa | GIF version |
Description: Relation between two methods of expressing "less than or equal to". (Contributed by NM, 27-Sep-1997.) |
Ref | Expression |
---|---|
wleoa.1 | ((a ∪ c) ≡ b) = 1 |
Ref | Expression |
---|---|
wleoa | ((a ∩ b) ≡ a) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wleoa.1 | . . . 4 ((a ∪ c) ≡ b) = 1 | |
2 | 1 | wr1 197 | . . 3 (b ≡ (a ∪ c)) = 1 |
3 | 2 | wlan 370 | . 2 ((a ∩ b) ≡ (a ∩ (a ∪ c))) = 1 |
4 | wa5c 201 | . 2 ((a ∩ (a ∪ c)) ≡ a) = 1 | |
5 | 3, 4 | wr2 371 | 1 ((a ∩ b) ≡ a) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ≡ tb 5 ∪ wo 6 ∩ wa 7 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: wdf2le2 386 wdid0id5 1111 wdid0id1 1112 wdid0id2 1113 wdid0id3 1114 wdid0id4 1115 |
Copyright terms: Public domain | W3C validator |