Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wlor | GIF version |
Description: Weak orthomodular law. (Contributed by NM, 24-Sep-1997.) |
Ref | Expression |
---|---|
wlor.1 | (a ≡ b) = 1 |
Ref | Expression |
---|---|
wlor | ((c ∪ a) ≡ (c ∪ b)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . . 3 (c ∪ a) = (a ∪ c) | |
2 | ax-a2 31 | . . 3 (c ∪ b) = (b ∪ c) | |
3 | 1, 2 | 2bi 99 | . 2 ((c ∪ a) ≡ (c ∪ b)) = ((a ∪ c) ≡ (b ∪ c)) |
4 | wlor.1 | . . 3 (a ≡ b) = 1 | |
5 | 4 | wr5-2v 366 | . 2 ((a ∪ c) ≡ (b ∪ c)) = 1 |
6 | 3, 5 | ax-r2 36 | 1 ((c ∪ a) ≡ (c ∪ b)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ≡ tb 5 ∪ wo 6 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: wr2 371 w2or 372 wleao 377 wom4 380 wom5 381 wcomlem 382 wcom3i 422 wfh3 425 wfh4 426 wlem14 430 ska2 432 ska4 433 |
Copyright terms: Public domain | W3C validator |