![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8p2e10 | Unicode version |
Description: 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
8p2e10 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8165 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | oveq2i 5554 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 8cn 8192 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | ax-1cn 7131 |
. . . 4
![]() ![]() ![]() ![]() | |
5 | 3, 4, 4 | addassi 7189 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 5 | eqtr4i 2105 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | df-9 8172 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 7 | oveq1i 5553 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 9p1e10 8560 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 6, 8, 9 | 3eqtr2i 2108 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-cnex 7129 ax-resscn 7130 ax-1cn 7131 ax-1re 7132 ax-icn 7133 ax-addcl 7134 ax-addrcl 7135 ax-mulcl 7136 ax-mulcom 7139 ax-addass 7140 ax-mulass 7141 ax-distr 7142 ax-1rid 7145 ax-0id 7146 ax-cnre 7149 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-br 3794 df-iota 4897 df-fv 4940 df-ov 5546 df-inn 8107 df-2 8165 df-3 8166 df-4 8167 df-5 8168 df-6 8169 df-7 8170 df-8 8171 df-9 8172 df-dec 8559 |
This theorem is referenced by: 8p3e11 8638 8t5e40 8675 |
Copyright terms: Public domain | W3C validator |