ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcmpblnq Unicode version

Theorem addcmpblnq 6619
Description: Lemma showing compatibility of addition. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
addcmpblnq  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R
) )  ->  <. (
( A  .N  G
)  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q  <. ( ( C  .N  S
)  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >. )
)

Proof of Theorem addcmpblnq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distrpig 6585 . . . . . . . 8  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
x  .N  ( y  +N  z ) )  =  ( ( x  .N  y )  +N  ( x  .N  z
) ) )
21adantl 271 . . . . . . 7  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N.  /\  z  e.  N. ) )  ->  (
x  .N  ( y  +N  z ) )  =  ( ( x  .N  y )  +N  ( x  .N  z
) ) )
3 simplll 500 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  A  e.  N. )
4 simprlr 505 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  G  e.  N. )
5 mulclpi 6580 . . . . . . . 8  |-  ( ( A  e.  N.  /\  G  e.  N. )  ->  ( A  .N  G
)  e.  N. )
63, 4, 5syl2anc 403 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( A  .N  G )  e.  N. )
7 simpllr 501 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  B  e.  N. )
8 simprll 504 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  F  e.  N. )
9 mulclpi 6580 . . . . . . . 8  |-  ( ( B  e.  N.  /\  F  e.  N. )  ->  ( B  .N  F
)  e.  N. )
107, 8, 9syl2anc 403 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( B  .N  F )  e.  N. )
11 mulclpi 6580 . . . . . . . . 9  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  e.  N. )
1211ad2ant2l 492 . . . . . . . 8  |-  ( ( ( C  e.  N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. )
)  ->  ( D  .N  S )  e.  N. )
1312ad2ant2l 492 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( D  .N  S )  e.  N. )
14 addclpi 6579 . . . . . . . 8  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  +N  y
)  e.  N. )
1514adantl 271 . . . . . . 7  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  +N  y )  e.  N. )
16 mulcompig 6583 . . . . . . . 8  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  =  ( y  .N  x ) )
1716adantl 271 . . . . . . 7  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  .N  y )  =  ( y  .N  x ) )
182, 6, 10, 13, 15, 17caovdir2d 5708 . . . . . 6  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  G )  +N  ( B  .N  F ) )  .N  ( D  .N  S
) )  =  ( ( ( A  .N  G )  .N  ( D  .N  S ) )  +N  ( ( B  .N  F )  .N  ( D  .N  S
) ) ) )
19 simplrr 503 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  D  e.  N. )
20 mulasspig 6584 . . . . . . . . 9  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
2120adantl 271 . . . . . . . 8  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N.  /\  z  e.  N. ) )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
22 simprrr 507 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  S  e.  N. )
23 mulclpi 6580 . . . . . . . . 9  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  e.  N. )
2423adantl 271 . . . . . . . 8  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  .N  y )  e.  N. )
253, 4, 19, 17, 21, 22, 24caov4d 5716 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( A  .N  G )  .N  ( D  .N  S
) )  =  ( ( A  .N  D
)  .N  ( G  .N  S ) ) )
267, 8, 19, 17, 21, 22, 24caov4d 5716 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( B  .N  F )  .N  ( D  .N  S
) )  =  ( ( B  .N  D
)  .N  ( F  .N  S ) ) )
2725, 26oveq12d 5561 . . . . . 6  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  G )  .N  ( D  .N  S ) )  +N  ( ( B  .N  F )  .N  ( D  .N  S ) ) )  =  ( ( ( A  .N  D
)  .N  ( G  .N  S ) )  +N  ( ( B  .N  D )  .N  ( F  .N  S
) ) ) )
2818, 27eqtrd 2114 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  G )  +N  ( B  .N  F ) )  .N  ( D  .N  S
) )  =  ( ( ( A  .N  D )  .N  ( G  .N  S ) )  +N  ( ( B  .N  D )  .N  ( F  .N  S
) ) ) )
29 oveq1 5550 . . . . . 6  |-  ( ( A  .N  D )  =  ( B  .N  C )  ->  (
( A  .N  D
)  .N  ( G  .N  S ) )  =  ( ( B  .N  C )  .N  ( G  .N  S
) ) )
30 oveq2 5551 . . . . . 6  |-  ( ( F  .N  S )  =  ( G  .N  R )  ->  (
( B  .N  D
)  .N  ( F  .N  S ) )  =  ( ( B  .N  D )  .N  ( G  .N  R
) ) )
3129, 30oveqan12d 5562 . . . . 5  |-  ( ( ( A  .N  D
)  =  ( B  .N  C )  /\  ( F  .N  S
)  =  ( G  .N  R ) )  ->  ( ( ( A  .N  D )  .N  ( G  .N  S ) )  +N  ( ( B  .N  D )  .N  ( F  .N  S ) ) )  =  ( ( ( B  .N  C
)  .N  ( G  .N  S ) )  +N  ( ( B  .N  D )  .N  ( G  .N  R
) ) ) )
3228, 31sylan9eq 2134 . . . 4  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( ( A  .N  D )  =  ( B  .N  C
)  /\  ( F  .N  S )  =  ( G  .N  R ) ) )  ->  (
( ( A  .N  G )  +N  ( B  .N  F ) )  .N  ( D  .N  S ) )  =  ( ( ( B  .N  C )  .N  ( G  .N  S
) )  +N  (
( B  .N  D
)  .N  ( G  .N  R ) ) ) )
33 mulclpi 6580 . . . . . . . 8  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  e.  N. )
347, 4, 33syl2anc 403 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( B  .N  G )  e.  N. )
35 simplrl 502 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  C  e.  N. )
36 mulclpi 6580 . . . . . . . 8  |-  ( ( C  e.  N.  /\  S  e.  N. )  ->  ( C  .N  S
)  e.  N. )
3735, 22, 36syl2anc 403 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( C  .N  S )  e.  N. )
38 simprrl 506 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  R  e.  N. )
39 mulclpi 6580 . . . . . . . 8  |-  ( ( D  e.  N.  /\  R  e.  N. )  ->  ( D  .N  R
)  e.  N. )
4019, 38, 39syl2anc 403 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( D  .N  R )  e.  N. )
41 distrpig 6585 . . . . . . 7  |-  ( ( ( B  .N  G
)  e.  N.  /\  ( C  .N  S
)  e.  N.  /\  ( D  .N  R
)  e.  N. )  ->  ( ( B  .N  G )  .N  (
( C  .N  S
)  +N  ( D  .N  R ) ) )  =  ( ( ( B  .N  G
)  .N  ( C  .N  S ) )  +N  ( ( B  .N  G )  .N  ( D  .N  R
) ) ) )
4234, 37, 40, 41syl3anc 1170 . . . . . 6  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( B  .N  G )  .N  ( ( C  .N  S )  +N  ( D  .N  R ) ) )  =  ( ( ( B  .N  G
)  .N  ( C  .N  S ) )  +N  ( ( B  .N  G )  .N  ( D  .N  R
) ) ) )
437, 4, 35, 17, 21, 22, 24caov4d 5716 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( B  .N  G )  .N  ( C  .N  S
) )  =  ( ( B  .N  C
)  .N  ( G  .N  S ) ) )
447, 4, 19, 17, 21, 38, 24caov4d 5716 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( B  .N  G )  .N  ( D  .N  R
) )  =  ( ( B  .N  D
)  .N  ( G  .N  R ) ) )
4543, 44oveq12d 5561 . . . . . 6  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( B  .N  G )  .N  ( C  .N  S ) )  +N  ( ( B  .N  G )  .N  ( D  .N  R ) ) )  =  ( ( ( B  .N  C
)  .N  ( G  .N  S ) )  +N  ( ( B  .N  D )  .N  ( G  .N  R
) ) ) )
4642, 45eqtrd 2114 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( B  .N  G )  .N  ( ( C  .N  S )  +N  ( D  .N  R ) ) )  =  ( ( ( B  .N  C
)  .N  ( G  .N  S ) )  +N  ( ( B  .N  D )  .N  ( G  .N  R
) ) ) )
4746adantr 270 . . . 4  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( ( A  .N  D )  =  ( B  .N  C
)  /\  ( F  .N  S )  =  ( G  .N  R ) ) )  ->  (
( B  .N  G
)  .N  ( ( C  .N  S )  +N  ( D  .N  R ) ) )  =  ( ( ( B  .N  C )  .N  ( G  .N  S ) )  +N  ( ( B  .N  D )  .N  ( G  .N  R ) ) ) )
4832, 47eqtr4d 2117 . . 3  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( ( A  .N  D )  =  ( B  .N  C
)  /\  ( F  .N  S )  =  ( G  .N  R ) ) )  ->  (
( ( A  .N  G )  +N  ( B  .N  F ) )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  (
( C  .N  S
)  +N  ( D  .N  R ) ) ) )
49 addclpi 6579 . . . . . . . . . 10  |-  ( ( ( A  .N  G
)  e.  N.  /\  ( B  .N  F
)  e.  N. )  ->  ( ( A  .N  G )  +N  ( B  .N  F ) )  e.  N. )
505, 9, 49syl2an 283 . . . . . . . . 9  |-  ( ( ( A  e.  N.  /\  G  e.  N. )  /\  ( B  e.  N.  /\  F  e.  N. )
)  ->  ( ( A  .N  G )  +N  ( B  .N  F
) )  e.  N. )
5150an42s 554 . . . . . . . 8  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. )
)  ->  ( ( A  .N  G )  +N  ( B  .N  F
) )  e.  N. )
5233ad2ant2l 492 . . . . . . . 8  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. )
)  ->  ( B  .N  G )  e.  N. )
5351, 52jca 300 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. )
)  ->  ( (
( A  .N  G
)  +N  ( B  .N  F ) )  e.  N.  /\  ( B  .N  G )  e. 
N. ) )
54 addclpi 6579 . . . . . . . . . 10  |-  ( ( ( C  .N  S
)  e.  N.  /\  ( D  .N  R
)  e.  N. )  ->  ( ( C  .N  S )  +N  ( D  .N  R ) )  e.  N. )
5536, 39, 54syl2an 283 . . . . . . . . 9  |-  ( ( ( C  e.  N.  /\  S  e.  N. )  /\  ( D  e.  N.  /\  R  e.  N. )
)  ->  ( ( C  .N  S )  +N  ( D  .N  R
) )  e.  N. )
5655an42s 554 . . . . . . . 8  |-  ( ( ( C  e.  N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. )
)  ->  ( ( C  .N  S )  +N  ( D  .N  R
) )  e.  N. )
5756, 12jca 300 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. )
)  ->  ( (
( C  .N  S
)  +N  ( D  .N  R ) )  e.  N.  /\  ( D  .N  S )  e. 
N. ) )
5853, 57anim12i 331 . . . . . 6  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. ) )  /\  ( ( C  e. 
N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( ( A  .N  G
)  +N  ( B  .N  F ) )  e.  N.  /\  ( B  .N  G )  e. 
N. )  /\  (
( ( C  .N  S )  +N  ( D  .N  R ) )  e.  N.  /\  ( D  .N  S )  e. 
N. ) ) )
5958an4s 553 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( ( A  .N  G
)  +N  ( B  .N  F ) )  e.  N.  /\  ( B  .N  G )  e. 
N. )  /\  (
( ( C  .N  S )  +N  ( D  .N  R ) )  e.  N.  /\  ( D  .N  S )  e. 
N. ) ) )
60 enqbreq 6608 . . . . 5  |-  ( ( ( ( ( A  .N  G )  +N  ( B  .N  F
) )  e.  N.  /\  ( B  .N  G
)  e.  N. )  /\  ( ( ( C  .N  S )  +N  ( D  .N  R
) )  e.  N.  /\  ( D  .N  S
)  e.  N. )
)  ->  ( <. ( ( A  .N  G
)  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q  <. ( ( C  .N  S
)  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >.  <->  ( (
( A  .N  G
)  +N  ( B  .N  F ) )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  (
( C  .N  S
)  +N  ( D  .N  R ) ) ) ) )
6159, 60syl 14 . . . 4  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( <. (
( A  .N  G
)  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q  <. ( ( C  .N  S
)  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >.  <->  ( (
( A  .N  G
)  +N  ( B  .N  F ) )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  (
( C  .N  S
)  +N  ( D  .N  R ) ) ) ) )
6261adantr 270 . . 3  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( ( A  .N  D )  =  ( B  .N  C
)  /\  ( F  .N  S )  =  ( G  .N  R ) ) )  ->  ( <. ( ( A  .N  G )  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q  <. ( ( C  .N  S
)  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >.  <->  ( (
( A  .N  G
)  +N  ( B  .N  F ) )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  (
( C  .N  S
)  +N  ( D  .N  R ) ) ) ) )
6348, 62mpbird 165 . 2  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( ( A  .N  D )  =  ( B  .N  C
)  /\  ( F  .N  S )  =  ( G  .N  R ) ) )  ->  <. (
( A  .N  G
)  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q  <. ( ( C  .N  S
)  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >. )
6463ex 113 1  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R
) )  ->  <. (
( A  .N  G
)  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q  <. ( ( C  .N  S
)  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    = wceq 1285    e. wcel 1434   <.cop 3409   class class class wbr 3793  (class class class)co 5543   N.cnpi 6524    +N cpli 6525    .N cmi 6526    ~Q ceq 6531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-oadd 6069  df-omul 6070  df-ni 6556  df-pli 6557  df-mi 6558  df-enq 6599
This theorem is referenced by:  addpipqqs  6622
  Copyright terms: Public domain W3C validator