ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addltmul Unicode version

Theorem addltmul 8956
Description: Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010.)
Assertion
Ref Expression
addltmul  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  ( A  +  B )  <  ( A  x.  B
) )

Proof of Theorem addltmul
StepHypRef Expression
1 2re 8790 . . . . . . 7  |-  2  e.  RR
2 1re 7765 . . . . . . 7  |-  1  e.  RR
3 ltsub1 8220 . . . . . . 7  |-  ( ( 2  e.  RR  /\  A  e.  RR  /\  1  e.  RR )  ->  (
2  <  A  <->  ( 2  -  1 )  < 
( A  -  1 ) ) )
41, 2, 3mp3an13 1306 . . . . . 6  |-  ( A  e.  RR  ->  (
2  <  A  <->  ( 2  -  1 )  < 
( A  -  1 ) ) )
5 2m1e1 8838 . . . . . . 7  |-  ( 2  -  1 )  =  1
65breq1i 3936 . . . . . 6  |-  ( ( 2  -  1 )  <  ( A  - 
1 )  <->  1  <  ( A  -  1 ) )
74, 6syl6bb 195 . . . . 5  |-  ( A  e.  RR  ->  (
2  <  A  <->  1  <  ( A  -  1 ) ) )
8 ltsub1 8220 . . . . . . 7  |-  ( ( 2  e.  RR  /\  B  e.  RR  /\  1  e.  RR )  ->  (
2  <  B  <->  ( 2  -  1 )  < 
( B  -  1 ) ) )
91, 2, 8mp3an13 1306 . . . . . 6  |-  ( B  e.  RR  ->  (
2  <  B  <->  ( 2  -  1 )  < 
( B  -  1 ) ) )
105breq1i 3936 . . . . . 6  |-  ( ( 2  -  1 )  <  ( B  - 
1 )  <->  1  <  ( B  -  1 ) )
119, 10syl6bb 195 . . . . 5  |-  ( B  e.  RR  ->  (
2  <  B  <->  1  <  ( B  -  1 ) ) )
127, 11bi2anan9 595 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  < 
A  /\  2  <  B )  <->  ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) ) ) )
13 peano2rem 8029 . . . . 5  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR )
14 peano2rem 8029 . . . . 5  |-  ( B  e.  RR  ->  ( B  -  1 )  e.  RR )
15 mulgt1 8621 . . . . . 6  |-  ( ( ( ( A  - 
1 )  e.  RR  /\  ( B  -  1 )  e.  RR )  /\  ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) ) )  -> 
1  <  ( ( A  -  1 )  x.  ( B  - 
1 ) ) )
1615ex 114 . . . . 5  |-  ( ( ( A  -  1 )  e.  RR  /\  ( B  -  1
)  e.  RR )  ->  ( ( 1  <  ( A  - 
1 )  /\  1  <  ( B  -  1 ) )  ->  1  <  ( ( A  - 
1 )  x.  ( B  -  1 ) ) ) )
1713, 14, 16syl2an 287 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) )  ->  1  <  ( ( A  - 
1 )  x.  ( B  -  1 ) ) ) )
1812, 17sylbid 149 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  < 
A  /\  2  <  B )  ->  1  <  ( ( A  -  1 )  x.  ( B  -  1 ) ) ) )
19 recn 7753 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
20 recn 7753 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
21 ax-1cn 7713 . . . . . . 7  |-  1  e.  CC
22 mulsub 8163 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  e.  CC )  /\  ( B  e.  CC  /\  1  e.  CC ) )  -> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
2321, 22mpanl2 431 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  1  e.  CC ) )  ->  ( ( A  -  1 )  x.  ( B  - 
1 ) )  =  ( ( ( A  x.  B )  +  ( 1  x.  1 ) )  -  (
( A  x.  1 )  +  ( B  x.  1 ) ) ) )
2421, 23mpanr2 434 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
2519, 20, 24syl2an 287 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
2625breq2d 3941 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( A  -  1 )  x.  ( B  -  1 ) )  <->  1  <  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
27 1t1e1 8872 . . . . . . 7  |-  ( 1  x.  1 )  =  1
2827oveq2i 5785 . . . . . 6  |-  ( ( A  x.  B )  +  ( 1  x.  1 ) )  =  ( ( A  x.  B )  +  1 )
2928breq2i 3937 . . . . 5  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  ( ( A  x.  B )  +  ( 1  x.  1 ) )  <->  ( (
( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  < 
( ( A  x.  B )  +  1 ) )
30 remulcl 7748 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  x.  1 )  e.  RR )
312, 30mpan2 421 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  x.  1 )  e.  RR )
32 remulcl 7748 . . . . . . . 8  |-  ( ( B  e.  RR  /\  1  e.  RR )  ->  ( B  x.  1 )  e.  RR )
332, 32mpan2 421 . . . . . . 7  |-  ( B  e.  RR  ->  ( B  x.  1 )  e.  RR )
34 readdcl 7746 . . . . . . 7  |-  ( ( ( A  x.  1 )  e.  RR  /\  ( B  x.  1
)  e.  RR )  ->  ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR )
3531, 33, 34syl2an 287 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR )
36 remulcl 7748 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
372, 2remulcli 7780 . . . . . . 7  |-  ( 1  x.  1 )  e.  RR
38 readdcl 7746 . . . . . . 7  |-  ( ( ( A  x.  B
)  e.  RR  /\  ( 1  x.  1 )  e.  RR )  ->  ( ( A  x.  B )  +  ( 1  x.  1 ) )  e.  RR )
3936, 37, 38sylancl 409 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  B )  +  ( 1  x.  1 ) )  e.  RR )
40 ltaddsub2 8199 . . . . . . 7  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR  /\  1  e.  RR  /\  (
( A  x.  B
)  +  ( 1  x.  1 ) )  e.  RR )  -> 
( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  (
( A  x.  B
)  +  ( 1  x.  1 ) )  <->  1  <  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
412, 40mp3an2 1303 . . . . . 6  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR  /\  ( ( A  x.  B )  +  ( 1  x.  1 ) )  e.  RR )  ->  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  < 
( ( A  x.  B )  +  ( 1  x.  1 ) )  <->  1  <  (
( ( A  x.  B )  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
4235, 39, 41syl2anc 408 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  (
( A  x.  B
)  +  ( 1  x.  1 ) )  <->  1  <  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
4329, 42syl5rbbr 194 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( ( A  x.  B )  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) )  <-> 
( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  ( ( A  x.  B )  +  1 ) ) )
44 ltadd1 8191 . . . . . . 7  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR  /\  ( A  x.  B
)  e.  RR  /\  1  e.  RR )  ->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  <  ( A  x.  B )  <->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  ( ( A  x.  B )  +  1 ) ) )
452, 44mp3an3 1304 . . . . . 6  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  < 
( A  x.  B
)  <->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  (
( A  x.  B
)  +  1 ) ) )
4635, 36, 45syl2anc 408 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  <  ( A  x.  B )  <->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  ( ( A  x.  B )  +  1 ) ) )
47 ax-1rid 7727 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
48 ax-1rid 7727 . . . . . . 7  |-  ( B  e.  RR  ->  ( B  x.  1 )  =  B )
4947, 48oveqan12d 5793 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  1 )  +  ( B  x.  1 ) )  =  ( A  +  B ) )
5049breq1d 3939 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  <  ( A  x.  B )  <->  ( A  +  B )  <  ( A  x.  B ) ) )
5146, 50bitr3d 189 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  (
( A  x.  B
)  +  1 )  <-> 
( A  +  B
)  <  ( A  x.  B ) ) )
5226, 43, 513bitrd 213 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( A  -  1 )  x.  ( B  -  1 ) )  <-> 
( A  +  B
)  <  ( A  x.  B ) ) )
5318, 52sylibd 148 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  < 
A  /\  2  <  B )  ->  ( A  +  B )  <  ( A  x.  B )
) )
5453imp 123 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  ( A  +  B )  <  ( A  x.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   CCcc 7618   RRcr 7619   1c1 7621    + caddc 7623    x. cmul 7625    < clt 7800    - cmin 7933   2c2 8771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-lttrn 7734  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-ltxr 7805  df-sub 7935  df-neg 7936  df-2 8779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator