![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breq1i | Unicode version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | breq1 3796 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-un 2978 df-sn 3412 df-pr 3413 df-op 3415 df-br 3794 |
This theorem is referenced by: eqbrtri 3812 brtpos0 5901 euen1 6349 euen1b 6350 2dom 6352 infglbti 6497 pr2nelem 6519 caucvgprprlemnbj 6945 caucvgprprlemmu 6947 caucvgprprlemaddq 6960 caucvgprprlem1 6961 gt0srpr 6987 caucvgsr 7040 pitonnlem1 7075 pitoregt0 7079 axprecex 7108 axpre-mulgt0 7115 axcaucvglemres 7127 lt0neg1 7639 le0neg1 7641 reclt1 8041 addltmul 8334 eluz2b1 8769 nn01to3 8783 xlt0neg1 8981 xle0neg1 8983 iccshftr 9092 iccshftl 9094 iccdil 9096 icccntr 9098 bernneq 9690 oddge22np1 10425 nn0o1gt2 10449 isprm3 10644 dvdsnprmd 10651 pw2dvdslemn 10687 |
Copyright terms: Public domain | W3C validator |