ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-mulext Unicode version

Theorem axpre-mulext 7020
Description: Strong extensionality of multiplication (expressed in terms of  <RR). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulext 7060.

(Contributed by Jim Kingdon, 18-Feb-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-mulext  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )

Proof of Theorem axpre-mulext
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 6963 . 2  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 elreal 6963 . 2  |-  ( B  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  B )
3 elreal 6963 . 2  |-  ( C  e.  RR  <->  E. z  e.  R.  <. z ,  0R >.  =  C )
4 oveq1 5547 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  x.  <. z ,  0R >. )  =  ( A  x.  <. z ,  0R >. ) )
54breq1d 3802 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( ( <. x ,  0R >.  x. 
<. z ,  0R >. ) 
<RR  ( <. y ,  0R >.  x.  <. z ,  0R >. )  <->  ( A  x.  <. z ,  0R >. ) 
<RR  ( <. y ,  0R >.  x.  <. z ,  0R >. ) ) )
6 breq1 3795 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  A  <RR  <. y ,  0R >. ) )
7 breq2 3796 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( <. y ,  0R >.  <RR  <. x ,  0R >.  <->  <. y ,  0R >. 
<RR  A ) )
86, 7orbi12d 717 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( ( <. x ,  0R >.  <RR  <. y ,  0R >.  \/ 
<. y ,  0R >.  <RR  <. x ,  0R >. )  <-> 
( A  <RR  <. y ,  0R >.  \/  <. y ,  0R >.  <RR  A ) ) )
95, 8imbi12d 227 . 2  |-  ( <.
x ,  0R >.  =  A  ->  ( (
( <. x ,  0R >.  x.  <. z ,  0R >. )  <RR  ( <. y ,  0R >.  x.  <. z ,  0R >. )  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  \/ 
<. y ,  0R >.  <RR  <. x ,  0R >. ) )  <->  ( ( A  x.  <. z ,  0R >. )  <RR  ( <. y ,  0R >.  x.  <. z ,  0R >. )  ->  ( A  <RR  <. y ,  0R >.  \/  <. y ,  0R >. 
<RR  A ) ) ) )
10 oveq1 5547 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  ( B  x.  <. z ,  0R >. ) )
1110breq2d 3804 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( ( A  x.  <. z ,  0R >. )  <RR  ( <.
y ,  0R >.  x. 
<. z ,  0R >. )  <-> 
( A  x.  <. z ,  0R >. )  <RR  ( B  x.  <. z ,  0R >. )
) )
12 breq2 3796 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( A  <RR 
<. y ,  0R >.  <->  A  <RR  B ) )
13 breq1 3795 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( <. y ,  0R >.  <RR  A  <->  B  <RR  A ) )
1412, 13orbi12d 717 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( ( A  <RR  <. y ,  0R >.  \/  <. y ,  0R >. 
<RR  A )  <->  ( A  <RR  B  \/  B  <RR  A ) ) )
1511, 14imbi12d 227 . 2  |-  ( <.
y ,  0R >.  =  B  ->  ( (
( A  x.  <. z ,  0R >. )  <RR  ( <. y ,  0R >.  x.  <. z ,  0R >. )  ->  ( A  <RR 
<. y ,  0R >.  \/ 
<. y ,  0R >.  <RR  A ) )  <->  ( ( A  x.  <. z ,  0R >. )  <RR  ( B  x.  <. z ,  0R >. )  ->  ( A  <RR  B  \/  B  <RR  A ) ) ) )
16 oveq2 5548 . . . 4  |-  ( <.
z ,  0R >.  =  C  ->  ( A  x.  <. z ,  0R >. )  =  ( A  x.  C ) )
17 oveq2 5548 . . . 4  |-  ( <.
z ,  0R >.  =  C  ->  ( B  x.  <. z ,  0R >. )  =  ( B  x.  C ) )
1816, 17breq12d 3805 . . 3  |-  ( <.
z ,  0R >.  =  C  ->  ( ( A  x.  <. z ,  0R >. )  <RR  ( B  x.  <. z ,  0R >. )  <->  ( A  x.  C )  <RR  ( B  x.  C ) ) )
1918imbi1d 224 . 2  |-  ( <.
z ,  0R >.  =  C  ->  ( (
( A  x.  <. z ,  0R >. )  <RR  ( B  x.  <. z ,  0R >. )  ->  ( A  <RR  B  \/  B  <RR  A ) )  <-> 
( ( A  x.  C )  <RR  ( B  x.  C )  -> 
( A  <RR  B  \/  B  <RR  A ) ) ) )
20 mulextsr1 6923 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  (
( x  .R  z
)  <R  ( y  .R  z )  ->  (
x  <R  y  \/  y  <R  x ) ) )
21 mulresr 6972 . . . . . 6  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( <. x ,  0R >.  x.  <. z ,  0R >. )  =  <. (
x  .R  z ) ,  0R >. )
22213adant2 934 . . . . 5  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  ( <. x ,  0R >.  x. 
<. z ,  0R >. )  =  <. ( x  .R  z ) ,  0R >. )
23 mulresr 6972 . . . . . 6  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  <. (
y  .R  z ) ,  0R >. )
24233adant1 933 . . . . 5  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  ( <. y ,  0R >.  x. 
<. z ,  0R >. )  =  <. ( y  .R  z ) ,  0R >. )
2522, 24breq12d 3805 . . . 4  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  (
( <. x ,  0R >.  x.  <. z ,  0R >. )  <RR  ( <. y ,  0R >.  x.  <. z ,  0R >. )  <->  <. ( x  .R  z ) ,  0R >.  <RR  <. (
y  .R  z ) ,  0R >. ) )
26 ltresr 6973 . . . 4  |-  ( <.
( x  .R  z
) ,  0R >.  <RR  <. ( y  .R  z
) ,  0R >.  <->  (
x  .R  z )  <R  ( y  .R  z
) )
2725, 26syl6bb 189 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  (
( <. x ,  0R >.  x.  <. z ,  0R >. )  <RR  ( <. y ,  0R >.  x.  <. z ,  0R >. )  <->  ( x  .R  z )  <R  (
y  .R  z )
) )
28 ltresr 6973 . . . . 5  |-  ( <.
x ,  0R >.  <RR  <. y ,  0R >.  <->  x  <R  y )
29 ltresr 6973 . . . . 5  |-  ( <.
y ,  0R >.  <RR  <. x ,  0R >.  <->  y  <R  x )
3028, 29orbi12i 691 . . . 4  |-  ( (
<. x ,  0R >.  <RR  <. y ,  0R >.  \/ 
<. y ,  0R >.  <RR  <. x ,  0R >. )  <-> 
( x  <R  y  \/  y  <R  x ) )
3130a1i 9 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  (
( <. x ,  0R >. 
<RR  <. y ,  0R >.  \/  <. y ,  0R >. 
<RR  <. x ,  0R >. )  <->  ( x  <R  y  \/  y  <R  x
) ) )
3220, 27, 313imtr4d 196 . 2  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  (
( <. x ,  0R >.  x.  <. z ,  0R >. )  <RR  ( <. y ,  0R >.  x.  <. z ,  0R >. )  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  \/ 
<. y ,  0R >.  <RR  <. x ,  0R >. ) ) )
331, 2, 3, 9, 15, 19, 323gencl 2605 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102    \/ wo 639    /\ w3a 896    = wceq 1259    e. wcel 1409   <.cop 3406   class class class wbr 3792  (class class class)co 5540   R.cnr 6453   0Rc0r 6454    .R cmr 6458    <R cltr 6459   RRcr 6946    <RR cltrr 6951    x. cmul 6952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-imp 6625  df-iltp 6626  df-enr 6869  df-nr 6870  df-plr 6871  df-mr 6872  df-ltr 6873  df-0r 6874  df-m1r 6876  df-c 6953  df-r 6957  df-mul 6959  df-lt 6960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator