ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-mulext GIF version

Theorem axpre-mulext 7696
Description: Strong extensionality of multiplication (expressed in terms of <). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulext 7738.

(Contributed by Jim Kingdon, 18-Feb-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-mulext ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴)))

Proof of Theorem axpre-mulext
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7636 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 7636 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 elreal 7636 . 2 (𝐶 ∈ ℝ ↔ ∃𝑧R𝑧, 0R⟩ = 𝐶)
4 oveq1 5781 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) = (𝐴 · ⟨𝑧, 0R⟩))
54breq1d 3939 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ (𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩)))
6 breq1 3932 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
7 breq2 3933 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ ⟨𝑦, 0R⟩ < 𝐴))
86, 7orbi12d 782 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)))
95, 8imbi12d 233 . 2 (⟨𝑥, 0R⟩ = 𝐴 → (((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩)) ↔ ((𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴))))
10 oveq1 5781 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = (𝐵 · ⟨𝑧, 0R⟩))
1110breq2d 3941 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ (𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩)))
12 breq2 3933 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
13 breq1 3932 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ < 𝐴𝐵 < 𝐴))
1412, 13orbi12d 782 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1511, 14imbi12d 233 . 2 (⟨𝑦, 0R⟩ = 𝐵 → (((𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)) ↔ ((𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩) → (𝐴 < 𝐵𝐵 < 𝐴))))
16 oveq2 5782 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (𝐴 · ⟨𝑧, 0R⟩) = (𝐴 · 𝐶))
17 oveq2 5782 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (𝐵 · ⟨𝑧, 0R⟩) = (𝐵 · 𝐶))
1816, 17breq12d 3942 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩) ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
1918imbi1d 230 . 2 (⟨𝑧, 0R⟩ = 𝐶 → (((𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩) → (𝐴 < 𝐵𝐵 < 𝐴)) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴))))
20 mulextsr1 7589 . . 3 ((𝑥R𝑦R𝑧R) → ((𝑥 ·R 𝑧) <R (𝑦 ·R 𝑧) → (𝑥 <R 𝑦𝑦 <R 𝑥)))
21 mulresr 7646 . . . . . 6 ((𝑥R𝑧R) → (⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑥 ·R 𝑧), 0R⟩)
22213adant2 1000 . . . . 5 ((𝑥R𝑦R𝑧R) → (⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑥 ·R 𝑧), 0R⟩)
23 mulresr 7646 . . . . . 6 ((𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
24233adant1 999 . . . . 5 ((𝑥R𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
2522, 24breq12d 3942 . . . 4 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ ⟨(𝑥 ·R 𝑧), 0R⟩ < ⟨(𝑦 ·R 𝑧), 0R⟩))
26 ltresr 7647 . . . 4 (⟨(𝑥 ·R 𝑧), 0R⟩ < ⟨(𝑦 ·R 𝑧), 0R⟩ ↔ (𝑥 ·R 𝑧) <R (𝑦 ·R 𝑧))
2725, 26syl6bb 195 . . 3 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ (𝑥 ·R 𝑧) <R (𝑦 ·R 𝑧)))
28 ltresr 7647 . . . . 5 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
29 ltresr 7647 . . . . 5 (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ 𝑦 <R 𝑥)
3028, 29orbi12i 753 . . . 4 ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝑥 <R 𝑦𝑦 <R 𝑥))
3130a1i 9 . . 3 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝑥 <R 𝑦𝑦 <R 𝑥)))
3220, 27, 313imtr4d 202 . 2 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩)))
331, 2, 3, 9, 15, 19, 323gencl 2720 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  cop 3530   class class class wbr 3929  (class class class)co 5774  Rcnr 7105  0Rc0r 7106   ·R cmr 7110   <R cltr 7111  cr 7619   < cltrr 7624   · cmul 7625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-i1p 7275  df-iplp 7276  df-imp 7277  df-iltp 7278  df-enr 7534  df-nr 7535  df-plr 7536  df-mr 7537  df-ltr 7538  df-0r 7539  df-m1r 7541  df-c 7626  df-r 7630  df-mul 7632  df-lt 7633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator