![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bibi12d | Unicode version |
Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
imbi12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bibi12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bibi1d 231 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | imbi12d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | bibi2d 230 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitrd 186 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: pm5.32 441 bi2bian9 573 cleqh 2179 abbi 2193 cleqf 2243 vtoclb 2657 vtoclbg 2660 ceqsexg 2724 elabgf 2737 reu6 2782 ru 2815 sbcbig 2861 sbcne12g 2925 sbcnestgf 2954 preq12bg 3573 nalset 3916 opthg 4001 opelopabsb 4023 wetriext 4327 opeliunxp2 4504 resieq 4650 elimasng 4723 cbviota 4902 iota2df 4921 fnbrfvb 5246 fvelimab 5261 fmptco 5362 fsng 5368 fressnfv 5382 funfvima3 5424 isorel 5479 isocnv 5482 isocnv2 5483 isotr 5487 ovg 5670 caovcang 5693 caovordg 5699 caovord3d 5702 caovord 5703 dftpos4 5912 ecopovsym 6268 ecopovsymg 6271 xpf1o 6385 nneneq 6392 supmoti 6465 supsnti 6477 isotilem 6478 isoti 6479 ltanqg 6652 ltmnqg 6653 elinp 6726 prnmaxl 6740 prnminu 6741 ltasrg 7009 axpre-ltadd 7114 zextle 8519 zextlt 8520 rexfiuz 10013 climshft 10281 dvdsext 10400 ltoddhalfle 10437 halfleoddlt 10438 bezoutlemmo 10539 bezoutlemeu 10540 bezoutlemle 10541 bezoutlemsup 10542 dfgcd3 10543 dvdssq 10564 rpexp 10676 bj-nalset 10844 bj-d0clsepcl 10878 bj-nn0sucALT 10931 |
Copyright terms: Public domain | W3C validator |