ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brprcneu Unicode version

Theorem brprcneu 5199
Description: If  A is a proper class, then there is no unique binary relationship with  A as the first element. (Contributed by Scott Fenton, 7-Oct-2017.)
Assertion
Ref Expression
brprcneu  |-  ( -.  A  e.  _V  ->  -.  E! x  A F x )
Distinct variable groups:    x, A    x, F

Proof of Theorem brprcneu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dtruex 4311 . . . . . . . . 9  |-  E. y  -.  y  =  x
2 equcom 1609 . . . . . . . . . . 11  |-  ( x  =  y  <->  y  =  x )
32notbii 604 . . . . . . . . . 10  |-  ( -.  x  =  y  <->  -.  y  =  x )
43exbii 1512 . . . . . . . . 9  |-  ( E. y  -.  x  =  y  <->  E. y  -.  y  =  x )
51, 4mpbir 138 . . . . . . . 8  |-  E. y  -.  x  =  y
65jctr 302 . . . . . . 7  |-  ( (/)  e.  F  ->  ( (/)  e.  F  /\  E. y  -.  x  =  y
) )
7 19.42v 1802 . . . . . . 7  |-  ( E. y ( (/)  e.  F  /\  -.  x  =  y )  <->  ( (/)  e.  F  /\  E. y  -.  x  =  y ) )
86, 7sylibr 141 . . . . . 6  |-  ( (/)  e.  F  ->  E. y
( (/)  e.  F  /\  -.  x  =  y
) )
9 opprc1 3599 . . . . . . . 8  |-  ( -.  A  e.  _V  ->  <. A ,  x >.  =  (/) )
109eleq1d 2122 . . . . . . 7  |-  ( -.  A  e.  _V  ->  (
<. A ,  x >.  e.  F  <->  (/)  e.  F ) )
11 opprc1 3599 . . . . . . . . . . . 12  |-  ( -.  A  e.  _V  ->  <. A ,  y >.  =  (/) )
1211eleq1d 2122 . . . . . . . . . . 11  |-  ( -.  A  e.  _V  ->  (
<. A ,  y >.  e.  F  <->  (/)  e.  F ) )
1310, 12anbi12d 450 . . . . . . . . . 10  |-  ( -.  A  e.  _V  ->  ( ( <. A ,  x >.  e.  F  /\  <. A ,  y >.  e.  F
)  <->  ( (/)  e.  F  /\  (/)  e.  F ) ) )
14 anidm 382 . . . . . . . . . 10  |-  ( (
(/)  e.  F  /\  (/) 
e.  F )  <->  (/)  e.  F
)
1513, 14syl6bb 189 . . . . . . . . 9  |-  ( -.  A  e.  _V  ->  ( ( <. A ,  x >.  e.  F  /\  <. A ,  y >.  e.  F
)  <->  (/)  e.  F ) )
1615anbi1d 446 . . . . . . . 8  |-  ( -.  A  e.  _V  ->  ( ( ( <. A ,  x >.  e.  F  /\  <. A ,  y >.  e.  F )  /\  -.  x  =  y )  <->  (
(/)  e.  F  /\  -.  x  =  y
) ) )
1716exbidv 1722 . . . . . . 7  |-  ( -.  A  e.  _V  ->  ( E. y ( (
<. A ,  x >.  e.  F  /\  <. A , 
y >.  e.  F )  /\  -.  x  =  y )  <->  E. y
( (/)  e.  F  /\  -.  x  =  y
) ) )
1810, 17imbi12d 227 . . . . . 6  |-  ( -.  A  e.  _V  ->  ( ( <. A ,  x >.  e.  F  ->  E. y
( ( <. A ,  x >.  e.  F  /\  <. A ,  y >.  e.  F )  /\  -.  x  =  y )
)  <->  ( (/)  e.  F  ->  E. y ( (/)  e.  F  /\  -.  x  =  y ) ) ) )
198, 18mpbiri 161 . . . . 5  |-  ( -.  A  e.  _V  ->  (
<. A ,  x >.  e.  F  ->  E. y
( ( <. A ,  x >.  e.  F  /\  <. A ,  y >.  e.  F )  /\  -.  x  =  y )
) )
20 df-br 3793 . . . . 5  |-  ( A F x  <->  <. A ,  x >.  e.  F )
21 df-br 3793 . . . . . . . 8  |-  ( A F y  <->  <. A , 
y >.  e.  F )
2220, 21anbi12i 441 . . . . . . 7  |-  ( ( A F x  /\  A F y )  <->  ( <. A ,  x >.  e.  F  /\  <. A ,  y
>.  e.  F ) )
2322anbi1i 439 . . . . . 6  |-  ( ( ( A F x  /\  A F y )  /\  -.  x  =  y )  <->  ( ( <. A ,  x >.  e.  F  /\  <. A , 
y >.  e.  F )  /\  -.  x  =  y ) )
2423exbii 1512 . . . . 5  |-  ( E. y ( ( A F x  /\  A F y )  /\  -.  x  =  y
)  <->  E. y ( (
<. A ,  x >.  e.  F  /\  <. A , 
y >.  e.  F )  /\  -.  x  =  y ) )
2519, 20, 243imtr4g 198 . . . 4  |-  ( -.  A  e.  _V  ->  ( A F x  ->  E. y ( ( A F x  /\  A F y )  /\  -.  x  =  y
) ) )
2625eximdv 1776 . . 3  |-  ( -.  A  e.  _V  ->  ( E. x  A F x  ->  E. x E. y ( ( A F x  /\  A F y )  /\  -.  x  =  y
) ) )
27 exanaliim 1554 . . . . . 6  |-  ( E. y ( ( A F x  /\  A F y )  /\  -.  x  =  y
)  ->  -.  A. y
( ( A F x  /\  A F y )  ->  x  =  y ) )
2827eximi 1507 . . . . 5  |-  ( E. x E. y ( ( A F x  /\  A F y )  /\  -.  x  =  y )  ->  E. x  -.  A. y
( ( A F x  /\  A F y )  ->  x  =  y ) )
29 exnalim 1553 . . . . 5  |-  ( E. x  -.  A. y
( ( A F x  /\  A F y )  ->  x  =  y )  ->  -.  A. x A. y
( ( A F x  /\  A F y )  ->  x  =  y ) )
3028, 29syl 14 . . . 4  |-  ( E. x E. y ( ( A F x  /\  A F y )  /\  -.  x  =  y )  ->  -.  A. x A. y
( ( A F x  /\  A F y )  ->  x  =  y ) )
31 breq2 3796 . . . . . 6  |-  ( x  =  y  ->  ( A F x  <->  A F
y ) )
3231mo4 1977 . . . . 5  |-  ( E* x  A F x  <->  A. x A. y ( ( A F x  /\  A F y )  ->  x  =  y ) )
3332notbii 604 . . . 4  |-  ( -. 
E* x  A F x  <->  -.  A. x A. y ( ( A F x  /\  A F y )  ->  x  =  y )
)
3430, 33sylibr 141 . . 3  |-  ( E. x E. y ( ( A F x  /\  A F y )  /\  -.  x  =  y )  ->  -.  E* x  A F x )
3526, 34syl6 33 . 2  |-  ( -.  A  e.  _V  ->  ( E. x  A F x  ->  -.  E* x  A F x ) )
36 eu5 1963 . . . 4  |-  ( E! x  A F x  <-> 
( E. x  A F x  /\  E* x  A F x ) )
3736notbii 604 . . 3  |-  ( -.  E! x  A F x  <->  -.  ( E. x  A F x  /\  E* x  A F x ) )
38 imnan 634 . . 3  |-  ( ( E. x  A F x  ->  -.  E* x  A F x )  <->  -.  ( E. x  A F x  /\  E* x  A F x ) )
3937, 38bitr4i 180 . 2  |-  ( -.  E! x  A F x  <->  ( E. x  A F x  ->  -.  E* x  A F x ) )
4035, 39sylibr 141 1  |-  ( -.  A  e.  _V  ->  -.  E! x  A F x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 101   A.wal 1257   E.wex 1397    e. wcel 1409   E!weu 1916   E*wmo 1917   _Vcvv 2574   (/)c0 3252   <.cop 3406   class class class wbr 3792
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-setind 4290
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793
This theorem is referenced by:  fvprc  5200
  Copyright terms: Public domain W3C validator