ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsn Unicode version

Theorem cnvsn 4827
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
cnvsn.1  |-  A  e. 
_V
cnvsn.2  |-  B  e. 
_V
Assertion
Ref Expression
cnvsn  |-  `' { <. A ,  B >. }  =  { <. B ,  A >. }

Proof of Theorem cnvsn
StepHypRef Expression
1 cnvcnvsn 4821 . 2  |-  `' `' { <. B ,  A >. }  =  `' { <. A ,  B >. }
2 cnvsn.2 . . . 4  |-  B  e. 
_V
3 cnvsn.1 . . . 4  |-  A  e. 
_V
42, 3relsnop 4466 . . 3  |-  Rel  { <. B ,  A >. }
5 dfrel2 4795 . . 3  |-  ( Rel 
{ <. B ,  A >. }  <->  `' `' { <. B ,  A >. }  =  { <. B ,  A >. } )
64, 5mpbi 143 . 2  |-  `' `' { <. B ,  A >. }  =  { <. B ,  A >. }
71, 6eqtr3i 2104 1  |-  `' { <. A ,  B >. }  =  { <. B ,  A >. }
Colors of variables: wff set class
Syntax hints:    = wceq 1285    e. wcel 1434   _Vcvv 2602   {csn 3400   <.cop 3403   `'ccnv 4364   Rel wrel 4370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-br 3788  df-opab 3842  df-xp 4371  df-rel 4372  df-cnv 4373
This theorem is referenced by:  op2ndb  4828  cnvsng  4830  f1osn  5191
  Copyright terms: Public domain W3C validator