ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcj Unicode version

Theorem dvcj 12842
Description: The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 12841. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvcj  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )

Proof of Theorem dvcj
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 518 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  F : X --> CC )
2 simplr 519 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  X  C_  RR )
3 simpr 109 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x  e.  dom  ( RR  _D  F ) )
41, 2, 3dvcjbr 12841 . . . 4  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x
( RR  _D  (
*  o.  F ) ) ( * `  ( ( RR  _D  F ) `  x
) ) )
5 cjf 10619 . . . . . . . . . . . 12  |-  * : CC --> CC
6 fco 5288 . . . . . . . . . . . 12  |-  ( ( * : CC --> CC  /\  F : X --> CC )  ->  ( *  o.  F ) : X --> CC )
75, 6mpan 420 . . . . . . . . . . 11  |-  ( F : X --> CC  ->  ( *  o.  F ) : X --> CC )
87adantr 274 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
) : X --> CC )
97fdmd 5279 . . . . . . . . . . . 12  |-  ( F : X --> CC  ->  dom  ( *  o.  F
)  =  X )
109adantr 274 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( *  o.  F
)  =  X )
1110feq2d 5260 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( ( *  o.  F ) : dom  ( *  o.  F
) --> CC  <->  ( *  o.  F ) : X --> CC ) )
128, 11mpbird 166 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
) : dom  (
*  o.  F ) --> CC )
13 simpr 109 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  X  C_  RR )
1410, 13eqsstrd 3133 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( *  o.  F
)  C_  RR )
15 cnex 7744 . . . . . . . . . 10  |-  CC  e.  _V
16 reex 7754 . . . . . . . . . 10  |-  RR  e.  _V
1715, 16elpm2 6574 . . . . . . . . 9  |-  ( ( *  o.  F )  e.  ( CC  ^pm  RR )  <->  ( ( *  o.  F ) : dom  ( *  o.  F ) --> CC  /\  dom  ( *  o.  F
)  C_  RR )
)
1812, 14, 17sylanbrc 413 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
)  e.  ( CC 
^pm  RR ) )
19 dvfpm 12827 . . . . . . . 8  |-  ( ( *  o.  F )  e.  ( CC  ^pm  RR )  ->  ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  (
*  o.  F ) ) --> CC )
2018, 19syl 14 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) ) : dom  ( RR  _D  ( *  o.  F ) ) --> CC )
2120ffund 5276 . . . . . 6  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  Fun  ( RR  _D  (
*  o.  F ) ) )
22 funbrfv 5460 . . . . . 6  |-  ( Fun  ( RR  _D  (
*  o.  F ) )  ->  ( x
( RR  _D  (
*  o.  F ) ) ( * `  ( ( RR  _D  F ) `  x
) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `  x
) ) ) )
2321, 22syl 14 . . . . 5  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x ( RR 
_D  ( *  o.  F ) ) ( * `  ( ( RR  _D  F ) `
 x ) )  ->  ( ( RR 
_D  ( *  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `
 x ) ) ) )
2423adantr 274 . . . 4  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
x ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  x ) )  -> 
( ( RR  _D  ( *  o.  F
) ) `  x
)  =  ( * `
 ( ( RR 
_D  F ) `  x ) ) ) )
254, 24mpd 13 . . 3  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `  x
) ) )
2625mpteq2dva 4018 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  dom  ( RR  _D  F
)  |->  ( ( RR 
_D  ( *  o.  F ) ) `  x ) )  =  ( x  e.  dom  ( RR  _D  F
)  |->  ( * `  ( ( RR  _D  F ) `  x
) ) ) )
27 vex 2689 . . . . . . . . . 10  |-  x  e. 
_V
2820ffvelrnda 5555 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  e.  CC )
2928cjcld 10712 . . . . . . . . . 10  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
* `  ( ( RR  _D  ( *  o.  F ) ) `  x ) )  e.  CC )
307ad2antrr 479 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
*  o.  F ) : X --> CC )
31 simplr 519 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  X  C_  RR )
32 simpr 109 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x  e.  dom  ( RR  _D  ( *  o.  F
) ) )
3330, 31, 32dvcjbr 12841 . . . . . . . . . 10  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x
( RR  _D  (
*  o.  ( *  o.  F ) ) ) ( * `  ( ( RR  _D  ( *  o.  F
) ) `  x
) ) )
34 breldmg 4745 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  ( * `  (
( RR  _D  (
*  o.  F ) ) `  x ) )  e.  CC  /\  x ( RR  _D  ( *  o.  (
*  o.  F ) ) ) ( * `
 ( ( RR 
_D  ( *  o.  F ) ) `  x ) ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) ) )
3527, 29, 33, 34mp3an2i 1320 . . . . . . . . 9  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x  e.  dom  ( RR  _D  ( *  o.  (
*  o.  F ) ) ) )
3635ex 114 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  dom  ( RR  _D  (
*  o.  F ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) ) ) )
3736ssrdv 3103 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  C_  dom  ( RR 
_D  ( *  o.  ( *  o.  F
) ) ) )
38 ffvelrn 5553 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  x  e.  X )  ->  ( F `  x
)  e.  CC )
3938adantlr 468 . . . . . . . . . . . 12  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( F `  x )  e.  CC )
4039cjcjd 10715 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( * `  ( * `  ( F `  x )
) )  =  ( F `  x ) )
4140mpteq2dva 4018 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  X  |->  ( * `  (
* `  ( F `  x ) ) ) )  =  ( x  e.  X  |->  ( F `
 x ) ) )
4239cjcld 10712 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( * `  ( F `  x
) )  e.  CC )
43 simpl 108 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : X --> CC )
4443feqmptd 5474 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
455a1i 9 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  * : CC --> CC )
4645feqmptd 5474 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  *  =  ( y  e.  CC  |->  ( * `  y ) ) )
47 fveq2 5421 . . . . . . . . . . . 12  |-  ( y  =  ( F `  x )  ->  (
* `  y )  =  ( * `  ( F `  x ) ) )
4839, 44, 46, 47fmptco 5586 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
)  =  ( x  e.  X  |->  ( * `
 ( F `  x ) ) ) )
49 fveq2 5421 . . . . . . . . . . 11  |-  ( y  =  ( * `  ( F `  x ) )  ->  ( * `  y )  =  ( * `  ( * `
 ( F `  x ) ) ) )
5042, 48, 46, 49fmptco 5586 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  (
*  o.  F ) )  =  ( x  e.  X  |->  ( * `
 ( * `  ( F `  x ) ) ) ) )
5141, 50, 443eqtr4d 2182 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  (
*  o.  F ) )  =  F )
5251oveq2d 5790 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  ( *  o.  F ) ) )  =  ( RR 
_D  F ) )
5352dmeqd 4741 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) )  =  dom  ( RR  _D  F ) )
5437, 53sseqtrd 3135 . . . . . 6  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  C_  dom  ( RR 
_D  F ) )
55 ffdm 5293 . . . . . . . . . . . . 13  |-  ( F : X --> CC  ->  ( F : dom  F --> CC  /\  dom  F  C_  X ) )
5655simpld 111 . . . . . . . . . . . 12  |-  ( F : X --> CC  ->  F : dom  F --> CC )
5756adantr 274 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : dom  F --> CC )
58 fdm 5278 . . . . . . . . . . . . 13  |-  ( F : X --> CC  ->  dom 
F  =  X )
5958adantr 274 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  F  =  X )
6059, 13eqsstrd 3133 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  F  C_  RR )
6115, 16elpm2 6574 . . . . . . . . . . 11  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
6257, 60, 61sylanbrc 413 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F  e.  ( CC  ^pm 
RR ) )
63 dvfpm 12827 . . . . . . . . . 10  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC )
6462, 63syl 14 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> CC )
6564ffvelrnda 5555 . . . . . . . 8  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  F
) `  x )  e.  CC )
6665cjcld 10712 . . . . . . 7  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
* `  ( ( RR  _D  F ) `  x ) )  e.  CC )
67 breldmg 4745 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( * `  (
( RR  _D  F
) `  x )
)  e.  CC  /\  x ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  x ) ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )
6827, 66, 4, 67mp3an2i 1320 . . . . . 6  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x  e.  dom  ( RR  _D  ( *  o.  F
) ) )
6954, 68eqelssd 3116 . . . . 5  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  =  dom  ( RR  _D  F ) )
7069feq2d 5260 . . . 4  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  (
*  o.  F ) ) --> CC  <->  ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  F
) --> CC ) )
7120, 70mpbid 146 . . 3  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) ) : dom  ( RR  _D  F ) --> CC )
7271feqmptd 5474 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( x  e.  dom  ( RR 
_D  F )  |->  ( ( RR  _D  (
*  o.  F ) ) `  x ) ) )
7364feqmptd 5474 . . 3  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  F
)  =  ( x  e.  dom  ( RR 
_D  F )  |->  ( ( RR  _D  F
) `  x )
) )
74 fveq2 5421 . . 3  |-  ( y  =  ( ( RR 
_D  F ) `  x )  ->  (
* `  y )  =  ( * `  ( ( RR  _D  F ) `  x
) ) )
7565, 73, 46, 74fmptco 5586 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  ( RR  _D  F ) )  =  ( x  e. 
dom  ( RR  _D  F )  |->  ( * `
 ( ( RR 
_D  F ) `  x ) ) ) )
7626, 72, 753eqtr4d 2182 1  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2686    C_ wss 3071   class class class wbr 3929    |-> cmpt 3989   dom cdm 4539    o. ccom 4543   Fun wfun 5117   -->wf 5119   ` cfv 5123  (class class class)co 5774    ^pm cpm 6543   CCcc 7618   RRcr 7619   *ccj 10611    _D cdv 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-ioo 9675  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cn 12357  df-cnp 12358  df-cncf 12727  df-limced 12794  df-dvap 12795
This theorem is referenced by:  dvfre  12843
  Copyright terms: Public domain W3C validator