ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcjbr Unicode version

Theorem dvcjbr 12841
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 12842. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f  |-  ( ph  ->  F : X --> CC )
dvcj.x  |-  ( ph  ->  X  C_  RR )
dvcj.c  |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )
Assertion
Ref Expression
dvcjbr  |-  ( ph  ->  C ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  C ) ) )

Proof of Theorem dvcjbr
Dummy variables  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-resscn 7712 . . . . 5  |-  RR  C_  CC
21a1i 9 . . . 4  |-  ( ph  ->  RR  C_  CC )
3 dvcj.f . . . 4  |-  ( ph  ->  F : X --> CC )
4 dvcj.x . . . 4  |-  ( ph  ->  X  C_  RR )
5 eqid 2139 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
65tgioo2cntop 12718 . . . 4  |-  ( topGen ` 
ran  (,) )  =  ( ( MetOpen `  ( abs  o. 
-  ) )t  RR )
72, 3, 4, 6, 5dvbssntrcntop 12822 . . 3  |-  ( ph  ->  dom  ( RR  _D  F )  C_  (
( int `  ( topGen `
 ran  (,) )
) `  X )
)
8 dvcj.c . . 3  |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )
97, 8sseldd 3098 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  X ) )
104, 1sstrdi 3109 . . . . . 6  |-  ( ph  ->  X  C_  CC )
111a1i 9 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  RR  C_  CC )
12 simpl 108 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : X --> CC )
13 simpr 109 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  X  C_  RR )
1411, 12, 13dvbss 12823 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  F
)  C_  X )
153, 4, 14syl2anc 408 . . . . . . 7  |-  ( ph  ->  dom  ( RR  _D  F )  C_  X
)
1615, 8sseldd 3098 . . . . . 6  |-  ( ph  ->  C  e.  X )
173, 10, 16dvlemap 12818 . . . . 5  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) )  e.  CC )
1817fmpttd 5575 . . . 4  |-  ( ph  ->  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) : { w  e.  X  |  w #  C }
--> CC )
19 ssidd 3118 . . . 4  |-  ( ph  ->  CC  C_  CC )
205cntoptopon 12701 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
2120toponrestid 12188 . . . 4  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( (
MetOpen `  ( abs  o.  -  ) )t  CC )
223fdmd 5279 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  F  =  X )
2322feq2d 5260 . . . . . . . . . . . 12  |-  ( ph  ->  ( F : dom  F --> CC  <->  F : X --> CC ) )
243, 23mpbird 166 . . . . . . . . . . 11  |-  ( ph  ->  F : dom  F --> CC )
2522, 4eqsstrd 3133 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  C_  RR )
26 cnex 7744 . . . . . . . . . . . 12  |-  CC  e.  _V
27 reex 7754 . . . . . . . . . . . 12  |-  RR  e.  _V
2826, 27elpm2 6574 . . . . . . . . . . 11  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
2924, 25, 28sylanbrc 413 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
30 dvfpm 12827 . . . . . . . . . 10  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC )
3129, 30syl 14 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> CC )
3231ffund 5276 . . . . . . . 8  |-  ( ph  ->  Fun  ( RR  _D  F ) )
33 funfvbrb 5533 . . . . . . . 8  |-  ( Fun  ( RR  _D  F
)  ->  ( C  e.  dom  ( RR  _D  F )  <->  C ( RR  _D  F ) ( ( RR  _D  F
) `  C )
) )
3432, 33syl 14 . . . . . . 7  |-  ( ph  ->  ( C  e.  dom  ( RR  _D  F
)  <->  C ( RR  _D  F ) ( ( RR  _D  F ) `
 C ) ) )
358, 34mpbid 146 . . . . . 6  |-  ( ph  ->  C ( RR  _D  F ) ( ( RR  _D  F ) `
 C ) )
36 eqid 2139 . . . . . . 7  |-  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) )  =  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) )
376, 5, 36, 2, 3, 4eldvap 12820 . . . . . 6  |-  ( ph  ->  ( C ( RR 
_D  F ) ( ( RR  _D  F
) `  C )  <->  ( C  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  X )  /\  (
( RR  _D  F
) `  C )  e.  ( ( x  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) ) ) lim CC  C ) ) ) )
3835, 37mpbid 146 . . . . 5  |-  ( ph  ->  ( C  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  X )  /\  ( ( RR  _D  F ) `  C
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) ) )
3938simprd 113 . . . 4  |-  ( ph  ->  ( ( RR  _D  F ) `  C
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) )
40 cjcncf 12744 . . . . . 6  |-  *  e.  ( CC -cn-> CC )
415cncfcn1cntop 12750 . . . . . 6  |-  ( CC
-cn-> CC )  =  ( ( MetOpen `  ( abs  o. 
-  ) )  Cn  ( MetOpen `  ( abs  o. 
-  ) ) )
4240, 41eleqtri 2214 . . . . 5  |-  *  e.  ( ( MetOpen `  ( abs  o.  -  ) )  Cn  ( MetOpen `  ( abs  o.  -  ) ) )
4331, 8ffvelrnd 5556 . . . . 5  |-  ( ph  ->  ( ( RR  _D  F ) `  C
)  e.  CC )
44 unicntopcntop 12705 . . . . . 6  |-  CC  =  U. ( MetOpen `  ( abs  o. 
-  ) )
4544cncnpi 12397 . . . . 5  |-  ( ( *  e.  ( (
MetOpen `  ( abs  o.  -  ) )  Cn  ( MetOpen `  ( abs  o. 
-  ) ) )  /\  ( ( RR 
_D  F ) `  C )  e.  CC )  ->  *  e.  ( ( ( MetOpen `  ( abs  o.  -  ) )  CnP  ( MetOpen `  ( abs  o.  -  ) ) ) `  ( ( RR  _D  F ) `
 C ) ) )
4642, 43, 45sylancr 410 . . . 4  |-  ( ph  ->  *  e.  ( ( ( MetOpen `  ( abs  o. 
-  ) )  CnP  ( MetOpen `  ( abs  o. 
-  ) ) ) `
 ( ( RR 
_D  F ) `  C ) ) )
4718, 19, 5, 21, 39, 46limccnpcntop 12813 . . 3  |-  ( ph  ->  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( *  o.  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) ) lim
CC  C ) )
48 cjf 10619 . . . . . . 7  |-  * : CC --> CC
4948a1i 9 . . . . . 6  |-  ( ph  ->  * : CC --> CC )
5049, 17cofmpt 5589 . . . . 5  |-  ( ph  ->  ( *  o.  (
x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) )  =  ( x  e.  { w  e.  X  |  w #  C }  |->  ( * `  ( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) ) ) ) )
513adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  F : X --> CC )
52 elrabi 2837 . . . . . . . . . . 11  |-  ( x  e.  { w  e.  X  |  w #  C }  ->  x  e.  X
)
5352adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  X )
5451, 53ffvelrnd 5556 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( F `  x
)  e.  CC )
553, 16ffvelrnd 5556 . . . . . . . . . 10  |-  ( ph  ->  ( F `  C
)  e.  CC )
5655adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( F `  C
)  e.  CC )
5754, 56subcld 8073 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  x )  -  ( F `  C )
)  e.  CC )
584sselda 3097 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  RR )
5952, 58sylan2 284 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  RR )
604, 16sseldd 3098 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR )
6160adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  C  e.  RR )
6259, 61resubcld 8143 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
)  e.  RR )
6362recnd 7794 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
)  e.  CC )
6459recnd 7794 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  CC )
6561recnd 7794 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  C  e.  CC )
66 breq1 3932 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
w #  C  <->  x #  C
) )
6766elrab 2840 . . . . . . . . . . 11  |-  ( x  e.  { w  e.  X  |  w #  C } 
<->  ( x  e.  X  /\  x #  C )
)
6867simprbi 273 . . . . . . . . . 10  |-  ( x  e.  { w  e.  X  |  w #  C }  ->  x #  C )
6968adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x #  C )
7064, 65, 69subap0d 8406 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
) #  0 )
7157, 63, 70cjdivapd 10740 . . . . . . 7  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) )  =  ( ( * `  ( ( F `  x )  -  ( F `  C ) ) )  /  ( * `  ( x  -  C
) ) ) )
72 cjsub 10664 . . . . . . . . . 10  |-  ( ( ( F `  x
)  e.  CC  /\  ( F `  C )  e.  CC )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
7354, 56, 72syl2anc 408 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
74 fvco3 5492 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  x  e.  X )  ->  ( ( *  o.  F ) `  x
)  =  ( * `
 ( F `  x ) ) )
753, 52, 74syl2an 287 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( *  o.  F ) `  x
)  =  ( * `
 ( F `  x ) ) )
76 fvco3 5492 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  C  e.  X )  ->  ( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
773, 16, 76syl2anc 408 . . . . . . . . . . 11  |-  ( ph  ->  ( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
7877adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
7975, 78oveq12d 5792 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( *  o.  F ) `  x )  -  (
( *  o.  F
) `  C )
)  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
8073, 79eqtr4d 2175 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) ) )
8162cjred 10743 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
x  -  C ) )  =  ( x  -  C ) )
8280, 81oveq12d 5792 . . . . . . 7  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( * `  ( ( F `  x )  -  ( F `  C )
) )  /  (
* `  ( x  -  C ) ) )  =  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) )
8371, 82eqtrd 2172 . . . . . 6  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) )  =  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) )
8483mpteq2dva 4018 . . . . 5  |-  ( ph  ->  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( * `
 ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) )  =  ( x  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `
 x )  -  ( ( *  o.  F ) `  C
) )  /  (
x  -  C ) ) ) )
8550, 84eqtrd 2172 . . . 4  |-  ( ph  ->  ( *  o.  (
x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) )  =  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) ) )
8685oveq1d 5789 . . 3  |-  ( ph  ->  ( ( *  o.  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) ) lim CC  C )  =  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) ) lim CC  C ) )
8747, 86eleqtrd 2218 . 2  |-  ( ph  ->  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) )
88 eqid 2139 . . 3  |-  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) )  =  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) )
89 fco 5288 . . . 4  |-  ( ( * : CC --> CC  /\  F : X --> CC )  ->  ( *  o.  F ) : X --> CC )
9048, 3, 89sylancr 410 . . 3  |-  ( ph  ->  ( *  o.  F
) : X --> CC )
916, 5, 88, 2, 90, 4eldvap 12820 . 2  |-  ( ph  ->  ( C ( RR 
_D  ( *  o.  F ) ) ( * `  ( ( RR  _D  F ) `
 C ) )  <-> 
( C  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  X )  /\  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) ) ) )
929, 87, 91mpbir2and 928 1  |-  ( ph  ->  C ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   {crab 2420    C_ wss 3071   class class class wbr 3929    |-> cmpt 3989   dom cdm 4539   ran crn 4540    o. ccom 4543   Fun wfun 5117   -->wf 5119   ` cfv 5123  (class class class)co 5774    ^pm cpm 6543   CCcc 7618   RRcr 7619    - cmin 7933   # cap 8343    / cdiv 8432   (,)cioo 9671   *ccj 10611   abscabs 10769   topGenctg 12135   MetOpencmopn 12154   intcnt 12262    Cn ccn 12354    CnP ccnp 12355   -cn->ccncf 12726   lim CC climc 12792    _D cdv 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-ioo 9675  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cn 12357  df-cnp 12358  df-cncf 12727  df-limced 12794  df-dvap 12795
This theorem is referenced by:  dvcj  12842
  Copyright terms: Public domain W3C validator