ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fientri3 Unicode version

Theorem fientri3 6803
Description: Trichotomy of dominance for finite sets. (Contributed by Jim Kingdon, 15-Sep-2021.)
Assertion
Ref Expression
fientri3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  ~<_  B  \/  B  ~<_  A ) )

Proof of Theorem fientri3
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6655 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 119 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantr 274 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  E. n  e.  om  A  ~~  n )
4 isfi 6655 . . . . 5  |-  ( B  e.  Fin  <->  E. m  e.  om  B  ~~  m
)
54biimpi 119 . . . 4  |-  ( B  e.  Fin  ->  E. m  e.  om  B  ~~  m
)
65ad2antlr 480 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  E. m  e.  om  B  ~~  m
)
7 simplrr 525 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  ->  A  ~~  n )
87adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  A  ~~  n )
9 simpr 109 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  n  C_  m )
10 simplrl 524 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  ->  n  e.  om )
1110adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  n  e.  om )
12 simplrl 524 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  m  e.  om )
13 nndomo 6758 . . . . . . . . 9  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  ~<_  m  <->  n  C_  m
) )
1411, 12, 13syl2anc 408 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  -> 
( n  ~<_  m  <->  n  C_  m
) )
159, 14mpbird 166 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  n  ~<_  m )
16 endomtr 6684 . . . . . . 7  |-  ( ( A  ~~  n  /\  n  ~<_  m )  ->  A  ~<_  m )
178, 15, 16syl2anc 408 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  A  ~<_  m )
18 simplrr 525 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  B  ~~  m )
1918ensymd 6677 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  m  ~~  B )
20 domentr 6685 . . . . . 6  |-  ( ( A  ~<_  m  /\  m  ~~  B )  ->  A  ~<_  B )
2117, 19, 20syl2anc 408 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  A  ~<_  B )
2221orcd 722 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  -> 
( A  ~<_  B  \/  B  ~<_  A ) )
23 simplrr 525 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  B  ~~  m )
24 simpr 109 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  m  C_  n )
25 simplrl 524 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  m  e.  om )
2610adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  n  e.  om )
27 nndomo 6758 . . . . . . . . 9  |-  ( ( m  e.  om  /\  n  e.  om )  ->  ( m  ~<_  n  <->  m  C_  n
) )
2825, 26, 27syl2anc 408 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  -> 
( m  ~<_  n  <->  m  C_  n
) )
2924, 28mpbird 166 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  m  ~<_  n )
30 endomtr 6684 . . . . . . 7  |-  ( ( B  ~~  m  /\  m  ~<_  n )  ->  B  ~<_  n )
3123, 29, 30syl2anc 408 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  B  ~<_  n )
327adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  A  ~~  n )
3332ensymd 6677 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  n  ~~  A )
34 domentr 6685 . . . . . 6  |-  ( ( B  ~<_  n  /\  n  ~~  A )  ->  B  ~<_  A )
3531, 33, 34syl2anc 408 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  B  ~<_  A )
3635olcd 723 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  -> 
( A  ~<_  B  \/  B  ~<_  A ) )
37 simprl 520 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  ->  m  e.  om )
38 nntri2or2 6394 . . . . 5  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  C_  m  \/  m  C_  n ) )
3910, 37, 38syl2anc 408 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
( n  C_  m  \/  m  C_  n ) )
4022, 36, 39mpjaodan 787 . . 3  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
( A  ~<_  B  \/  B  ~<_  A ) )
416, 40rexlimddv 2554 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( A  ~<_  B  \/  B  ~<_  A ) )
423, 41rexlimddv 2554 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  ~<_  B  \/  B  ~<_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    e. wcel 1480   E.wrex 2417    C_ wss 3071   class class class wbr 3929   omcom 4504    ~~ cen 6632    ~<_ cdom 6633   Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator