ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpw Unicode version

Theorem exmidpw 6802
Description: Excluded middle is equivalent to the power set of  1o having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.)
Assertion
Ref Expression
exmidpw  |-  (EXMID  <->  ~P 1o  ~~  2o )

Proof of Theorem exmidpw
StepHypRef Expression
1 df1o2 6326 . . . . 5  |-  1o  =  { (/) }
2 p0ex 4112 . . . . 5  |-  { (/) }  e.  _V
31, 2eqeltri 2212 . . . 4  |-  1o  e.  _V
43pwex 4107 . . 3  |-  ~P 1o  e.  _V
5 exmid01 4121 . . . . . . . . 9  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
65biimpi 119 . . . . . . . 8  |-  (EXMID  ->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
7619.21bi 1537 . . . . . . 7  |-  (EXMID  ->  (
x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
81pweqi 3514 . . . . . . . . 9  |-  ~P 1o  =  ~P { (/) }
98eleq2i 2206 . . . . . . . 8  |-  ( x  e.  ~P 1o  <->  x  e.  ~P { (/) } )
10 velpw 3517 . . . . . . . 8  |-  ( x  e.  ~P { (/) }  <-> 
x  C_  { (/) } )
119, 10bitri 183 . . . . . . 7  |-  ( x  e.  ~P 1o  <->  x  C_  { (/) } )
12 vex 2689 . . . . . . . 8  |-  x  e. 
_V
1312elpr 3548 . . . . . . 7  |-  ( x  e.  { (/) ,  { (/)
} }  <->  ( x  =  (/)  \/  x  =  { (/) } ) )
147, 11, 133imtr4g 204 . . . . . 6  |-  (EXMID  ->  (
x  e.  ~P 1o  ->  x  e.  { (/) ,  { (/) } } ) )
1514ssrdv 3103 . . . . 5  |-  (EXMID  ->  ~P 1o  C_  { (/) ,  { (/)
} } )
16 pwpw0ss 3731 . . . . . . 7  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
1716, 8sseqtrri 3132 . . . . . 6  |-  { (/) ,  { (/) } }  C_  ~P 1o
1817a1i 9 . . . . 5  |-  (EXMID  ->  { (/) ,  { (/) } }  C_  ~P 1o )
1915, 18eqssd 3114 . . . 4  |-  (EXMID  ->  ~P 1o  =  { (/) ,  { (/)
} } )
20 df2o2 6328 . . . 4  |-  2o  =  { (/) ,  { (/) } }
2119, 20syl6eqr 2190 . . 3  |-  (EXMID  ->  ~P 1o  =  2o )
22 eqeng 6660 . . 3  |-  ( ~P 1o  e.  _V  ->  ( ~P 1o  =  2o 
->  ~P 1o  ~~  2o ) )
234, 21, 22mpsyl 65 . 2  |-  (EXMID  ->  ~P 1o  ~~  2o )
24 0nep0 4089 . . . . . . . 8  |-  (/)  =/=  { (/)
}
25 0ex 4055 . . . . . . . . . . 11  |-  (/)  e.  _V
2625, 2prss 3676 . . . . . . . . . 10  |-  ( (
(/)  e.  ~P 1o  /\ 
{ (/) }  e.  ~P 1o )  <->  { (/) ,  { (/) } }  C_  ~P 1o )
2717, 26mpbir 145 . . . . . . . . 9  |-  ( (/)  e.  ~P 1o  /\  { (/)
}  e.  ~P 1o )
28 en2eqpr 6801 . . . . . . . . . 10  |-  ( ( ~P 1o  ~~  2o  /\  (/)  e.  ~P 1o  /\  {
(/) }  e.  ~P 1o )  ->  ( (/)  =/=  { (/) }  ->  ~P 1o  =  { (/) ,  { (/)
} } ) )
29283expb 1182 . . . . . . . . 9  |-  ( ( ~P 1o  ~~  2o  /\  ( (/)  e.  ~P 1o  /\  { (/) }  e.  ~P 1o ) )  -> 
( (/)  =/=  { (/) }  ->  ~P 1o  =  { (/) ,  { (/) } } ) )
3027, 29mpan2 421 . . . . . . . 8  |-  ( ~P 1o  ~~  2o  ->  (
(/)  =/=  { (/) }  ->  ~P 1o  =  { (/) ,  { (/) } } ) )
3124, 30mpi 15 . . . . . . 7  |-  ( ~P 1o  ~~  2o  ->  ~P 1o  =  { (/) ,  { (/) } } )
3231eleq2d 2209 . . . . . 6  |-  ( ~P 1o  ~~  2o  ->  ( x  e.  ~P 1o  <->  x  e.  { (/) ,  { (/)
} } ) )
3332, 11, 133bitr3g 221 . . . . 5  |-  ( ~P 1o  ~~  2o  ->  ( x  C_  { (/) }  <->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
3433biimpd 143 . . . 4  |-  ( ~P 1o  ~~  2o  ->  ( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
3534alrimiv 1846 . . 3  |-  ( ~P 1o  ~~  2o  ->  A. x ( x  C_  {
(/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
3635, 5sylibr 133 . 2  |-  ( ~P 1o  ~~  2o  -> EXMID )
3723, 36impbii 125 1  |-  (EXMID  <->  ~P 1o  ~~  2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697   A.wal 1329    = wceq 1331    e. wcel 1480    =/= wne 2308   _Vcvv 2686    C_ wss 3071   (/)c0 3363   ~Pcpw 3510   {csn 3527   {cpr 3528   class class class wbr 3929  EXMIDwem 4118   1oc1o 6306   2oc2o 6307    ~~ cen 6632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-exmid 4119  df-id 4215  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1o 6313  df-2o 6314  df-en 6635
This theorem is referenced by:  pwf1oexmid  13194
  Copyright terms: Public domain W3C validator