ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexglem Unicode version

Theorem funimaexglem 5010
Description: Lemma for funimaexg 5011. It constitutes the interesting part of funimaexg 5011, in which  B 
C_  dom  A. (Contributed by Jim Kingdon, 27-Dec-2018.)
Assertion
Ref Expression
funimaexglem  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A " B )  e. 
_V )

Proof of Theorem funimaexglem
Dummy variables  b  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun7 4956 . . . . . . . . . 10  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
21simprbi 264 . . . . . . . . 9  |-  ( Fun 
A  ->  A. x  e.  dom  A E* y  x A y )
323ad2ant1 936 . . . . . . . 8  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. x  e.  dom  A E* y  x A y )
4 ssralv 3032 . . . . . . . . 9  |-  ( B 
C_  dom  A  ->  ( A. x  e.  dom  A E* y  x A y  ->  A. x  e.  B  E* y  x A y ) )
543ad2ant3 938 . . . . . . . 8  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A. x  e.  dom  A E* y  x A y  ->  A. x  e.  B  E* y  x A y ) )
63, 5mpd 13 . . . . . . 7  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. x  e.  B  E* y  x A y )
76alrimiv 1770 . . . . . 6  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. z A. x  e.  B  E* y  x A
y )
8 sseq1 2994 . . . . . . . . . . . . . . . . 17  |-  ( b  =  B  ->  (
b  C_  dom  A  <->  B  C_  dom  A ) )
98biimpar 285 . . . . . . . . . . . . . . . 16  |-  ( ( b  =  B  /\  B  C_  dom  A )  ->  b  C_  dom  A )
1093adant1 933 . . . . . . . . . . . . . . 15  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  b  C_ 
dom  A )
11 simp1 915 . . . . . . . . . . . . . . 15  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  Fun  A )
1210, 11jca 294 . . . . . . . . . . . . . 14  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  (
b  C_  dom  A  /\  Fun  A ) )
13 dffun8 4957 . . . . . . . . . . . . . . . . . 18  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E! y  x A y ) )
1413simprbi 264 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
A  ->  A. x  e.  dom  A E! y  x A y )
1514adantl 266 . . . . . . . . . . . . . . . 16  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  A. x  e.  dom  A E! y  x A y )
16 ssel 2967 . . . . . . . . . . . . . . . . 17  |-  ( b 
C_  dom  A  ->  ( x  e.  b  ->  x  e.  dom  A ) )
1716adantr 265 . . . . . . . . . . . . . . . 16  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  (
x  e.  b  ->  x  e.  dom  A ) )
18 rsp 2386 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  dom  A E! y  x A y  ->  ( x  e. 
dom  A  ->  E! y  x A y ) )
1915, 17, 18sylsyld 56 . . . . . . . . . . . . . . 15  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  (
x  e.  b  ->  E! y  x A
y ) )
2019ralrimiv 2408 . . . . . . . . . . . . . 14  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  A. x  e.  b  E! y  x A y )
21 zfrep6 3902 . . . . . . . . . . . . . 14  |-  ( A. x  e.  b  E! y  x A y  ->  E. z A. x  e.  b  E. y  e.  z  x A y )
2212, 20, 213syl 17 . . . . . . . . . . . . 13  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  E. z A. x  e.  b  E. y  e.  z  x A y )
23 raleq 2522 . . . . . . . . . . . . . . 15  |-  ( b  =  B  ->  ( A. x  e.  b  E. y  e.  z  x A y  <->  A. x  e.  B  E. y  e.  z  x A
y ) )
2423exbidv 1722 . . . . . . . . . . . . . 14  |-  ( b  =  B  ->  ( E. z A. x  e.  b  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y  e.  z  x A y ) )
25243ad2ant2 937 . . . . . . . . . . . . 13  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  ( E. z A. x  e.  b  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y  e.  z  x A y ) )
2622, 25mpbid 139 . . . . . . . . . . . 12  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
27263com12 1119 . . . . . . . . . . 11  |-  ( ( b  =  B  /\  Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
28273expib 1118 . . . . . . . . . 10  |-  ( b  =  B  ->  (
( Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A
y ) )
2928vtocleg 2641 . . . . . . . . 9  |-  ( B  e.  C  ->  (
( Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A
y ) )
30293impib 1113 . . . . . . . 8  |-  ( ( B  e.  C  /\  Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
31303com12 1119 . . . . . . 7  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
32 df-rex 2329 . . . . . . . . . 10  |-  ( E. y  e.  z  x A y  <->  E. y
( y  e.  z  /\  x A y ) )
33 exancom 1515 . . . . . . . . . 10  |-  ( E. y ( y  e.  z  /\  x A y )  <->  E. y
( x A y  /\  y  e.  z ) )
3432, 33bitri 177 . . . . . . . . 9  |-  ( E. y  e.  z  x A y  <->  E. y
( x A y  /\  y  e.  z ) )
3534ralbii 2347 . . . . . . . 8  |-  ( A. x  e.  B  E. y  e.  z  x A y  <->  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )
3635exbii 1512 . . . . . . 7  |-  ( E. z A. x  e.  B  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z )
)
3731, 36sylib 131 . . . . . 6  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )
38 19.29 1527 . . . . . . 7  |-  ( ( A. z A. x  e.  B  E* y  x A y  /\  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) ) )
39 nfcv 2194 . . . . . . . . . . 11  |-  F/_ y B
40 nfmo1 1928 . . . . . . . . . . 11  |-  F/ y E* y  x A y
4139, 40nfralxy 2377 . . . . . . . . . 10  |-  F/ y A. x  e.  B  E* y  x A
y
42 nfe1 1401 . . . . . . . . . . 11  |-  F/ y E. y ( x A y  /\  y  e.  z )
4339, 42nfralxy 2377 . . . . . . . . . 10  |-  F/ y A. x  e.  B  E. y ( x A y  /\  y  e.  z )
4441, 43nfan 1473 . . . . . . . . 9  |-  F/ y ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )
45 r19.26 2458 . . . . . . . . . 10  |-  ( A. x  e.  B  ( E* y  x A
y  /\  E. y
( x A y  /\  y  e.  z ) )  <->  ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) ) )
46 mopick 1994 . . . . . . . . . . 11  |-  ( ( E* y  x A y  /\  E. y
( x A y  /\  y  e.  z ) )  ->  (
x A y  -> 
y  e.  z ) )
4746ralimi 2401 . . . . . . . . . 10  |-  ( A. x  e.  B  ( E* y  x A
y  /\  E. y
( x A y  /\  y  e.  z ) )  ->  A. x  e.  B  ( x A y  ->  y  e.  z ) )
4845, 47sylbir 129 . . . . . . . . 9  |-  ( ( A. x  e.  B  E* y  x A
y  /\  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )  ->  A. x  e.  B  ( x A y  ->  y  e.  z ) )
4944, 48alrimi 1431 . . . . . . . 8  |-  ( ( A. x  e.  B  E* y  x A
y  /\  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )  ->  A. y A. x  e.  B  ( x A y  ->  y  e.  z ) )
5049eximi 1507 . . . . . . 7  |-  ( E. z ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z ) )
5138, 50syl 14 . . . . . 6  |-  ( ( A. z A. x  e.  B  E* y  x A y  /\  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z ) )
527, 37, 51syl2anc 397 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. y A. x  e.  B  ( x A y  ->  y  e.  z ) )
53 r19.23v 2442 . . . . . . 7  |-  ( A. x  e.  B  (
x A y  -> 
y  e.  z )  <-> 
( E. x  e.  B  x A y  ->  y  e.  z ) )
5453albii 1375 . . . . . 6  |-  ( A. y A. x  e.  B  ( x A y  ->  y  e.  z )  <->  A. y ( E. x  e.  B  x A y  ->  y  e.  z ) )
5554exbii 1512 . . . . 5  |-  ( E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z )  <->  E. z A. y ( E. x  e.  B  x A y  ->  y  e.  z ) )
5652, 55sylib 131 . . . 4  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. y ( E. x  e.  B  x A
y  ->  y  e.  z ) )
57 abss 3037 . . . . 5  |-  ( { y  |  E. x  e.  B  x A
y }  C_  z  <->  A. y ( E. x  e.  B  x A
y  ->  y  e.  z ) )
5857exbii 1512 . . . 4  |-  ( E. z { y  |  E. x  e.  B  x A y }  C_  z 
<->  E. z A. y
( E. x  e.  B  x A y  ->  y  e.  z ) )
5956, 58sylibr 141 . . 3  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z { y  |  E. x  e.  B  x A y }  C_  z )
60 dfima2 4698 . . . . 5  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
6160sseq1i 2997 . . . 4  |-  ( ( A " B ) 
C_  z  <->  { y  |  E. x  e.  B  x A y }  C_  z )
6261exbii 1512 . . 3  |-  ( E. z ( A " B )  C_  z  <->  E. z { y  |  E. x  e.  B  x A y }  C_  z )
6359, 62sylibr 141 . 2  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z
( A " B
)  C_  z )
64 vex 2577 . . . 4  |-  z  e. 
_V
6564ssex 3922 . . 3  |-  ( ( A " B ) 
C_  z  ->  ( A " B )  e. 
_V )
6665exlimiv 1505 . 2  |-  ( E. z ( A " B )  C_  z  ->  ( A " B
)  e.  _V )
6763, 66syl 14 1  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A " B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896   A.wal 1257    = wceq 1259   E.wex 1397    e. wcel 1409   E!weu 1916   E*wmo 1917   {cab 2042   A.wral 2323   E.wrex 2324   _Vcvv 2574    C_ wss 2945   class class class wbr 3792   dom cdm 4373   "cima 4376   Rel wrel 4378   Fun wfun 4924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-fun 4932
This theorem is referenced by:  funimaexg  5011
  Copyright terms: Public domain W3C validator