ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genplt2i Unicode version

Theorem genplt2i 6666
Description: Operating on both sides of two inequalities, when the operation is consistent with  <Q. (Contributed by Jim Kingdon, 6-Oct-2019.)
Hypotheses
Ref Expression
genplt2i.ord  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
genplt2i.com  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
Assertion
Ref Expression
genplt2i  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G D ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, D, y, z    x, G, y, z

Proof of Theorem genplt2i
StepHypRef Expression
1 simpl 106 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  A  <Q  B )
2 genplt2i.ord . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
32adantl 266 . . . 4  |-  ( ( ( A  <Q  B  /\  C  <Q  D )  /\  ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )
)  ->  ( x  <Q  y  <->  ( z G x )  <Q  (
z G y ) ) )
4 ltrelnq 6521 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
54brel 4420 . . . . 5  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
64brel 4420 . . . . 5  |-  ( C 
<Q  D  ->  ( C  e.  Q.  /\  D  e.  Q. ) )
7 simpll 489 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  A  e.  Q. )
85, 6, 7syl2an 277 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  A  e.  Q. )
9 simplr 490 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  B  e.  Q. )
105, 6, 9syl2an 277 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  B  e.  Q. )
11 simprl 491 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  C  e.  Q. )
125, 6, 11syl2an 277 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  C  e.  Q. )
13 genplt2i.com . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
1413adantl 266 . . . 4  |-  ( ( ( A  <Q  B  /\  C  <Q  D )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  ->  ( x G y )  =  ( y G x ) )
153, 8, 10, 12, 14caovord2d 5698 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A  <Q  B  <->  ( A G C )  <Q  ( B G C ) ) )
161, 15mpbid 139 . 2  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G C ) )
17 simpr 107 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  C  <Q  D )
18 simprr 492 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  D  e.  Q. )
195, 6, 18syl2an 277 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  D  e.  Q. )
203, 12, 19, 10caovordd 5697 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( C  <Q  D  <->  ( B G C )  <Q  ( B G D ) ) )
2117, 20mpbid 139 . 2  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( B G C )  <Q  ( B G D ) )
22 ltsonq 6554 . . 3  |-  <Q  Or  Q.
2322, 4sotri 4748 . 2  |-  ( ( ( A G C )  <Q  ( B G C )  /\  ( B G C )  <Q 
( B G D ) )  ->  ( A G C )  <Q 
( B G D ) )
2416, 21, 23syl2anc 397 1  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896    = wceq 1259    e. wcel 1409   class class class wbr 3792  (class class class)co 5540   Q.cnq 6436    <Q cltq 6441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-mi 6462  df-lti 6463  df-enq 6503  df-nqqs 6504  df-ltnqqs 6509
This theorem is referenced by:  genprndl  6677  genprndu  6678  genpdisj  6679
  Copyright terms: Public domain W3C validator