ILE Home Intuitionistic Logic Explorer This is the GIF version.
Change to Unicode version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3 wff 
-.  ph
wi 4 wff  ( ph  ->  ps )
ax-mp 5 |- 
ph   &    |-  ( ph  ->  ps )   =>    |- 
ps
ax-1 6 |-  ( ph  ->  ( ps  ->  ph ) )
ax-2 7 |-  ( ( ph  ->  ( ps  ->  ch )
)  ->  ( ( ph  ->  ps )  -> 
( ph  ->  ch )
) )
wa 103 wff  ( ph  /\  ps )
wb 104 wff  ( ph  <->  ps )
ax-ia1 105 |-  ( ( ph  /\  ps )  ->  ph )
ax-ia2 106 |-  ( ( ph  /\  ps )  ->  ps )
ax-ia3 107 |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
df-bi 116 |-  ( ( ( ph  <->  ps )  ->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )  /\  (
( ( ph  ->  ps )  /\  ( ps 
->  ph ) )  -> 
( ph  <->  ps ) ) )
ax-in1 603 |-  ( ( ph  ->  -. 
ph )  ->  -.  ph )
ax-in2 604 |-  ( -.  ph  ->  (
ph  ->  ps ) )
wo 697 wff  ( ph  \/  ps )
ax-io 698 |-  ( ( ( ph  \/  ch )  ->  ps ) 
<->  ( ( ph  ->  ps )  /\  ( ch 
->  ps ) ) )
wstab 815 wff STAB  ph
df-stab 816 |-  (STAB 
ph 
<->  ( -.  -.  ph  ->  ph ) )
wdc 819 wff DECID  ph
df-dc 820 |-  (DECID 
ph 
<->  ( ph  \/  -.  ph ) )
w3o 961 wff  ( ph  \/  ps  \/  ch )
w3a 962 wff  ( ph  /\  ps  /\ 
ch )
df-3or 963 |-  ( ( ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/ 
ch ) )
df-3an 964 |-  ( ( ph  /\  ps  /\  ch )  <->  ( ( ph  /\  ps )  /\  ch ) )
wal 1329 wff  A. x ph
cv 1330 class  x
wceq 1331 wff 
A  =  B
wtru 1332 wff T.
df-tru 1334 |-  ( T.  <->  ( A. x  x  =  x  ->  A. x  x  =  x ) )
wfal 1336 wff F.
df-fal 1337 |-  ( F.  <->  -. T.  )
wxo 1353 wff  ( ph  \/_  ps )
df-xor 1354 |-  ( ( ph  \/_  ps ) 
<->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps ) ) )
ax-5 1423 |-  ( A. x ( ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
ax-7 1424 |-  ( A. x A. y ph  ->  A. y A. x ph )
ax-gen 1425 |- 
ph   =>    |- 
A. x ph
wnf 1436 wff 
F/ x ph
df-nf 1437 |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
wex 1468 wff 
E. x ph
ax-ie1 1469 |-  ( E. x ph  ->  A. x E. x ph )
ax-ie2 1470 |-  ( A. x ( ps  ->  A. x ps )  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )
wcel 1480 wff 
A  e.  B
ax-8 1482 |-  ( x  =  y  ->  ( x  =  z  ->  y  =  z ) )
ax-10 1483 |-  ( A. x  x  =  y  ->  A. y 
y  =  x )
ax-11 1484 |-  ( x  =  y  ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
) )
ax-i12 1485 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z
( x  =  y  ->  A. z  x  =  y ) ) )
ax-bndl 1486 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
) )
ax-4 1487 |-  ( A. x ph  ->  ph )
ax-13 1491 |-  ( x  =  y  ->  ( x  e.  z  ->  y  e.  z ) )
ax-14 1492 |-  ( x  =  y  ->  ( z  e.  x  ->  z  e.  y ) )
ax-17 1506 |-  ( ph  ->  A. x ph )
ax-i9 1510 |-  E. x  x  =  y
ax-ial 1514 |-  ( A. x ph  ->  A. x A. x ph )
ax-i5r 1515 |-  ( ( A. x ph  ->  A. x ps )  ->  A. x ( A. x ph  ->  ps )
)
ax-10o 1694 |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ph ) )
wsb 1735 wff 
[ y  /  x ] ph
df-sb 1736 |-  ( [ y  /  x ] ph  <->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph ) ) )
ax-16 1786 |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph )
)
ax-11o 1795 |-  ( -.  A. x  x  =  y  ->  ( x  =  y  -> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
weu 1999 wff 
E! x ph
wmo 2000 wff 
E* x ph
df-eu 2002 |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
df-mo 2003 |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
ax-ext 2121 |-  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
cab 2125 class  { x  |  ph }
df-clab 2126 |-  ( x  e.  {
y  |  ph }  <->  [ x  /  y ]
ph )
df-cleq 2132 |-  ( A. x ( x  e.  y  <->  x  e.  z )  ->  y  =  z )   =>    |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
df-clel 2135 |-  ( A  e.  B  <->  E. x ( x  =  A  /\  x  e.  B ) )
wnfc 2268 wff  F/_ x A
df-nfc 2270 |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
wne 2308 wff 
A  =/=  B
df-ne 2309 |-  ( A  =/=  B  <->  -.  A  =  B )
wnel 2403 wff 
A  e/  B
df-nel 2404 |-  ( A  e/  B  <->  -.  A  e.  B )
wral 2416 wff  A. x  e.  A  ph
wrex 2417 wff 
E. x  e.  A  ph
wreu 2418 wff 
E! x  e.  A  ph
wrmo 2419 wff 
E* x  e.  A  ph
crab 2420 class  { x  e.  A  |  ph }
df-ral 2421 |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
df-rex 2422 |-  ( E. x  e.  A  ph  <->  E. x
( x  e.  A  /\  ph ) )
df-reu 2423 |-  ( E! x  e.  A  ph  <->  E! x
( x  e.  A  /\  ph ) )
df-rmo 2424 |-  ( E* x  e.  A  ph  <->  E* x
( x  e.  A  /\  ph ) )
df-rab 2425 |- 
{ x  e.  A  |  ph }  =  {
x  |  ( x  e.  A  /\  ph ) }
cvv 2686 class  _V
df-v 2688 |-  _V  =  { x  |  x  =  x }
wcdeq 2892 wff CondEq ( x  =  y  ->  ph )
df-cdeq 2893 |-  (CondEq ( x  =  y  ->  ph )  <->  ( x  =  y  ->  ph )
)
wsbc 2909 wff  [. A  /  x ]. ph
df-sbc 2910 |-  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph }
)
csb 3003 class  [_ A  /  x ]_ B
df-csb 3004 |- 
[_ A  /  x ]_ B  =  {
y  |  [. A  /  x ]. y  e.  B }
cdif 3068 class  ( A  \  B )
cun 3069 class  ( A  u.  B )
cin 3070 class  ( A  i^i  B )
wss 3071 wff 
A  C_  B
df-dif 3073 |-  ( A  \  B
)  =  { x  |  ( x  e.  A  /\  -.  x  e.  B ) }
df-un 3075 |-  ( A  u.  B
)  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
df-in 3077 |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B
) }
df-ss 3084 |-  ( A  C_  B  <->  ( A  i^i  B )  =  A )
c0 3363 class  (/)
df-nul 3364 |-  (/)  =  ( _V  \  _V )
cif 3474 class  if ( ph ,  A ,  B )
df-if 3475 |-  if ( ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
cpw 3510 class  ~P A
df-pw 3512 |-  ~P A  =  {
x  |  x  C_  A }
csn 3527 class  { A }
cpr 3528 class  { A ,  B }
ctp 3529 class  { A ,  B ,  C }
cop 3530 class  <. A ,  B >.
cotp 3531 class  <. A ,  B ,  C >.
df-sn 3533 |-  { A }  =  {
x  |  x  =  A }
df-pr 3534 |-  { A ,  B }  =  ( { A }  u.  { B } )
df-tp 3535 |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
df-op 3536 |-  <. A ,  B >.  =  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
df-ot 3537 |-  <. A ,  B ,  C >.  =  <. <. A ,  B >. ,  C >.
cuni 3736 class  U. A
df-uni 3737 |- 
U. A  =  {
x  |  E. y
( x  e.  y  /\  y  e.  A
) }
cint 3771 class  |^| A
df-int 3772 |- 
|^| A  =  {
x  |  A. y
( y  e.  A  ->  x  e.  y ) }
ciun 3813 class  U_ x  e.  A  B
ciin 3814 class  |^|_
x  e.  A  B
df-iun 3815 |- 
U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
df-iin 3816 |- 
|^|_ x  e.  A  B  =  { y  |  A. x  e.  A  y  e.  B }
wdisj 3906 wff Disj  x  e.  A  B
df-disj 3907 |-  (Disj  x  e.  A  B 
<-> 
A. y E* x  e.  A  y  e.  B )
wbr 3929 wff 
A R B
df-br 3930 |-  ( A R B  <->  <. A ,  B >.  e.  R )
copab 3988 class  {
<. x ,  y >.  |  ph }
cmpt 3989 class  ( x  e.  A  |->  B )
df-opab 3990 |- 
{ <. x ,  y
>.  |  ph }  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
df-mpt 3991 |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
wtr 4026 wff 
Tr  A
df-tr 4027 |-  ( Tr  A  <->  U. A  C_  A )
ax-coll 4043 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
ax-sep 4046 |- 
E. y A. x
( x  e.  y  <-> 
( x  e.  z  /\  ph ) )
ax-nul 4054 |- 
E. x A. y  -.  y  e.  x
ax-pow 4098 |- 
E. y A. z
( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y )
wem 4118 wff EXMID
df-exmid 4119 |-  (EXMID  <->  A. x ( x  C_  {
(/) }  -> DECID  (/)  e.  x ) )
ax-pr 4131 |-  E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
cep 4209 class  _E
cid 4210 class  _I
df-eprel 4211 |-  _E  =  { <. x ,  y >.  |  x  e.  y }
df-id 4215 |-  _I  =  { <. x ,  y >.  |  x  =  y }
wpo 4216 wff 
R  Po  A
wor 4217 wff 
R  Or  A
df-po 4218 |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
df-iso 4219 |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) ) )
wfrfor 4249 wff FrFor  R A S
wfr 4250 wff 
R  Fr  A
wse 4251 wff 
R Se  A
wwe 4252 wff 
R  We  A
df-frfor 4253 |-  (FrFor  R A S  <-> 
( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  S )  ->  x  e.  S )  ->  A  C_  S ) )
df-frind 4254 |-  ( R  Fr  A  <->  A. sFrFor  R A s )
df-se 4255 |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
df-wetr 4256 |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) ) )
word 4284 wff 
Ord  A
con0 4285 class  On
wlim 4286 wff 
Lim  A
csuc 4287 class  suc 
A
df-iord 4288 |-  ( Ord  A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
df-on 4290 |-  On  =  { x  |  Ord  x }
df-ilim 4291 |-  ( Lim  A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
df-suc 4293 |- 
suc  A  =  ( A  u.  { A } )
ax-un 4355 |-  E. y A. z ( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
ax-setind 4452 |-  ( A. a ( A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
ax-iinf 4502 |- 
E. x ( (/)  e.  x  /\  A. y
( y  e.  x  ->  suc  y  e.  x
) )
com 4504 class  om
df-iom 4505 |- 
om  =  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }
cxp 4537 class  ( A  X.  B )
ccnv 4538 class  `' A
cdm 4539 class  dom 
A
crn 4540 class  ran 
A
cres 4541 class  ( A  |`  B )
cima 4542 class  ( A " B )
ccom 4543 class  ( A  o.  B )
wrel 4544 wff 
Rel  A
df-xp 4545 |-  ( A  X.  B
)  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }
df-rel 4546 |-  ( Rel  A  <->  A  C_  ( _V  X.  _V ) )
df-cnv 4547 |-  `' A  =  { <. x ,  y >.  |  y A x }
df-co 4548 |-  ( A  o.  B
)  =  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
df-dm 4549 |-  dom  A  =  { x  |  E. y  x A y }
df-rn 4550 |-  ran  A  =  dom  `' A
df-res 4551 |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V )
)
df-ima 4552 |-  ( A " B
)  =  ran  ( A  |`  B )
cio 5086 class  ( iota x ph )
df-iota 5088 |-  ( iota x ph )  =  U. { y  |  { x  | 
ph }  =  {
y } }
wfun 5117 wff 
Fun  A
wfn 5118 wff 
A  Fn  B
wf 5119 wff 
F : A --> B
wf1 5120 wff 
F : A -1-1-> B
wfo 5121 wff 
F : A -onto-> B
wf1o 5122 wff 
F : A -1-1-onto-> B
cfv 5123 class  ( F `  A )
wiso 5124 wff 
H  Isom  R ,  S  ( A ,  B )
df-fun 5125 |-  ( Fun  A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
df-fn 5126 |-  ( A  Fn  B  <->  ( Fun  A  /\  dom  A  =  B ) )
df-f 5127 |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
df-f1 5128 |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
df-fo 5129 |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
df-f1o 5130 |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B
) )
df-fv 5131 |-  ( F `  A )  =  ( iota x A F x )
df-isom 5132 |-  ( H  Isom  R ,  S  ( A ,  B )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
crio 5729 class  (
iota_ x  e.  A  ph )
df-riota 5730 |-  ( iota_ x  e.  A  ph )  =  ( iota
x ( x  e.  A  /\  ph )
)
co 5774 class  ( A F B )
coprab 5775 class  { <. <. x ,  y
>. ,  z >.  | 
ph }
cmpo 5776 class  ( x  e.  A , 
y  e.  B  |->  C )
df-ov 5777 |-  ( A F B )  =  ( F `  <. A ,  B >. )
df-oprab 5778 |- 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
w  |  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) }
df-mpo 5779 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
cof 5980 class  oF R
cofr 5981 class  oR R
df-of 5982 |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
df-ofr 5983 |-  oR R  =  { <. f ,  g
>.  |  A. x  e.  ( dom  f  i^i 
dom  g ) ( f `  x ) R ( g `  x ) }
c1st 6036 class  1st
c2nd 6037 class  2nd
df-1st 6038 |- 
1st  =  ( x  e.  _V  |->  U. dom  { x } )
df-2nd 6039 |- 
2nd  =  ( x  e.  _V  |->  U. ran  { x } )
ctpos 6141 class tpos  F
df-tpos 6142 |- tpos  F  =  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
wsmo 6182 wff 
Smo  A
df-smo 6183 |-  ( Smo  A  <->  ( A : dom  A --> On  /\  Ord  dom  A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) ) ) )
crecs 6201 class recs ( F )
df-recs 6202 |- recs
( F )  = 
U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) }
crdg 6266 class  rec ( F ,  I
)
df-irdg 6267 |- 
rec ( F ,  I )  = recs (
( g  e.  _V  |->  ( I  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )
cfrec 6287 class frec ( F ,  I )
df-frec 6288 |- frec
( F ,  I
)  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
c1o 6306 class  1o
c2o 6307 class  2o
c3o 6308 class  3o
c4o 6309 class  4o
coa 6310 class  +o
comu 6311 class  .o
coei 6312 classo
df-1o 6313 |-  1o  =  suc  (/)
df-2o 6314 |-  2o  =  suc  1o
df-3o 6315 |-  3o  =  suc  2o
df-4o 6316 |-  4o  =  suc  3o
df-oadd 6317 |- 
+o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  suc  z ) ,  x ) `  y
) )
df-omul 6318 |- 
.o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y ) )
df-oexpi 6319 |-o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  ( z  .o  x ) ) ,  1o ) `  y ) )
wer 6426 wff 
R  Er  A
cec 6427 class  [ A ] R
cqs 6428 class  ( A /. R )
df-er 6429 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )
)
df-ec 6431 |-  [ A ] R  =  ( R " { A } )
df-qs 6435 |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
cmap 6542 class  ^m
cpm 6543 class  ^pm
df-map 6544 |- 
^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x } )
df-pm 6545 |-  ^pm  =  ( x  e. 
_V ,  y  e. 
_V  |->  { f  e. 
~P ( y  X.  x )  |  Fun  f } )
cixp 6592 class  X_ x  e.  A  B
df-ixp 6593 |-  X_ x  e.  A  B  =  { f  |  ( f  Fn 
{ x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B ) }
cen 6632 class  ~~
cdom 6633 class  ~<_
cfn 6634 class  Fin
df-en 6635 |-  ~~  =  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
df-dom 6636 |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x
-1-1-> y }
df-fin 6637 |- 
Fin  =  { x  |  E. y  e.  om  x  ~~  y }
cfi 6856 class  fi
df-fi 6857 |-  fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin ) z  =  |^| y } )
csup 6869 class  sup ( A ,  B ,  R )
cinf 6870 class inf ( A ,  B ,  R )
df-sup 6871 |- 
sup ( A ,  B ,  R )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  A  y R z ) ) }
df-inf 6872 |- inf ( A ,  B ,  R )  =  sup ( A ,  B ,  `' R )
cdju 6922 class  ( A B )
df-dju 6923 |-  ( A B )  =  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )
cinl 6930 class inl
cinr 6931 class inr
df-inl 6932 |- inl 
=  ( x  e. 
_V  |->  <. (/) ,  x >. )
df-inr 6933 |- inr 
=  ( x  e. 
_V  |->  <. 1o ,  x >. )
cdjucase 6968 class case ( R ,  S )
df-case 6969 |- case
( R ,  S
)  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )
cdjud 6987 class  ( R ⊔d  S )
df-djud 6988 |-  ( R ⊔d  S )  =  ( ( R  o.  `' (inl  |`  dom  R
) )  u.  ( S  o.  `' (inr  |` 
dom  S ) ) )
comni 7004 class Omni
xnninf 7005 class
df-omni 7006 |- Omni 
=  { y  | 
A. f ( f : y --> 2o  ->  ( E. x  e.  y  ( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) ) }
df-nninf 7007 |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
cmarkov 7025 class Markov
df-markov 7026 |- Markov  =  { y  |  A. f ( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x
)  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
ccrd 7035 class  card
df-card 7036 |- 
card  =  ( x  e.  _V  |->  |^| { y  e.  On  |  y  ~~  x } )
wac 7061 wff CHOICE
df-ac 7062 |-  (CHOICE  <->  A. x E. f ( f  C_  x  /\  f  Fn  dom  x ) )
wacc 7077 wff CCHOICE
df-cc 7078 |-  (CCHOICE  <->  A. x ( dom  x  ~~  om  ->  E. f
( f  C_  x  /\  f  Fn  dom  x ) ) )
cnpi 7080 class  N.
cpli 7081 class  +N
cmi 7082 class  .N
clti 7083 class  <N
cplpq 7084 class  +pQ
cmpq 7085 class  .pQ
cltpq 7086 class  <pQ
ceq 7087 class  ~Q
cnq 7088 class  Q.
c1q 7089 class  1Q
cplq 7090 class  +Q
cmq 7091 class  .Q
crq 7092 class  *Q
cltq 7093 class  <Q
ceq0 7094 class ~Q0
cnq0 7095 class Q0
c0q0 7096 class 0Q0
cplq0 7097 class +Q0
cmq0 7098 class ·Q0
cnp 7099 class  P.
c1p 7100 class  1P
cpp 7101 class  +P.
cmp 7102 class  .P.
cltp 7103 class  <P
cer 7104 class  ~R
cnr 7105 class  R.
c0r 7106 class  0R
c1r 7107 class  1R
cm1r 7108 class  -1R
cplr 7109 class  +R
cmr 7110 class  .R
cltr 7111 class  <R
df-ni 7112 |-  N.  =  ( om  \  { (/) } )
df-pli 7113 |- 
+N  =  (  +o  |`  ( N.  X.  N. ) )
df-mi 7114 |-  .N  =  (  .o  |`  ( N.  X.  N. ) )
df-lti 7115 |- 
<N  =  (  _E  i^i  ( N.  X.  N. ) )
df-plpq 7152 |- 
+pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-mpq 7153 |- 
.pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( 1st `  x )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-ltpq 7154 |- 
<pQ  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( 1st `  x )  .N  ( 2nd `  y ) ) 
<N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) }
df-enq 7155 |- 
~Q  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
df-nqqs 7156 |- 
Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
df-plqqs 7157 |- 
+Q  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
df-mqqs 7158 |- 
.Q  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
df-1nqqs 7159 |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
df-rq 7160 |-  *Q  =  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) }
df-ltnqqs 7161 |- 
<Q  =  { <. x ,  y >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~Q  /\  y  =  [ <. v ,  u >. ]  ~Q  )  /\  ( z  .N  u
)  <N  ( w  .N  v ) ) ) }
df-enq0 7232 |- ~Q0  =  { <. x ,  y
>.  |  ( (
x  e.  ( om 
X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
df-nq0 7233 |- Q0  =  ( ( om  X.  N. ) /. ~Q0  )
df-0nq0 7234 |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
df-plq0 7235 |- +Q0  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
df-mq0 7236 |- ·Q0  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
df-inp 7274 |- 
P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
df-i1p 7275 |-  1P  =  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >.
df-iplp 7276 |- 
+P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
df-imp 7277 |- 
.P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
df-iltp 7278 |- 
<P  =  { <. x ,  y >.  |  ( ( x  e.  P.  /\  y  e.  P. )  /\  E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) ) }
df-enr 7534 |- 
~R  =  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
df-nr 7535 |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
df-plr 7536 |- 
+R  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  f ) >. ]  ~R  ) ) }
df-mr 7537 |-  .R  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  f ) ) ,  ( ( w  .P.  f )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) }
df-ltr 7538 |- 
<R  =  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
df-0r 7539 |-  0R  =  [ <. 1P ,  1P >. ]  ~R
df-1r 7540 |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
df-m1r 7541 |- 
-1R  =  [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R
cc 7618 class  CC
cr 7619 class  RR
cc0 7620 class  0
c1 7621 class  1
ci 7622 class  _i
caddc 7623 class  +
cltrr 7624 class  <RR
cmul 7625 class  x.
df-c 7626 |-  CC  =  ( R.  X.  R. )
df-0 7627 |-  0  =  <. 0R ,  0R >.
df-1 7628 |-  1  =  <. 1R ,  0R >.
df-i 7629 |-  _i  =  <. 0R ,  1R >.
df-r 7630 |-  RR  =  ( R.  X.  { 0R } )
df-add 7631 |-  +  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
df-mul 7632 |-  x.  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
df-lt 7633 |-  <RR  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  E. z E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
ax-cnex 7711 |-  CC  e.  _V
ax-resscn 7712 |-  RR  C_  CC
ax-1cn 7713 |-  1  e.  CC
ax-1re 7714 |-  1  e.  RR
ax-icn 7715 |-  _i  e.  CC
ax-addcl 7716 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
ax-addrcl 7717 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
ax-mulcl 7718 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
ax-mulrcl 7719 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
ax-addcom 7720 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A ) )
ax-mulcom 7721 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
ax-addass 7722 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
ax-mulass 7723 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
ax-distr 7724 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
ax-i2m1 7725 |-  ( ( _i  x.  _i )  +  1
)  =  0
ax-0lt1 7726 |-  0  <RR  1
ax-1rid 7727 |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
ax-0id 7728 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
ax-rnegex 7729 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x
)  =  0 )
ax-precex 7730 |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) )
ax-cnre 7731 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) ) )
ax-pre-ltirr 7732 |-  ( A  e.  RR  ->  -.  A  <RR  A )
ax-pre-ltwlin 7733 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
ax-pre-lttrn 7734 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )
ax-pre-apti 7735 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
ax-pre-ltadd 7736 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A )  <RR  ( C  +  B
) ) )
ax-pre-mulgt0 7737 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <RR  A  /\  0  <RR  B )  -> 
0  <RR  ( A  x.  B ) ) )
ax-pre-mulext 7738 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
ax-arch 7739 |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) } A  <RR  n )
ax-caucvg 7740 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) ) )
ax-pre-suploc 7741 |-  ( ( ( A 
C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
ax-addf 7742 |-  +  : ( CC 
X.  CC ) --> CC
ax-mulf 7743 |-  x.  : ( CC 
X.  CC ) --> CC
cpnf 7797 class +oo
cmnf 7798 class -oo
cxr 7799 class  RR*
clt 7800 class  <
cle 7801 class  <_
df-pnf 7802 |- +oo  =  ~P U. CC
df-mnf 7803 |- -oo  =  ~P +oo
df-xr 7804 |-  RR*  =  ( RR  u.  { +oo , -oo }
)
df-ltxr 7805 |- 
<  =  ( { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
df-le 7806 |-  <_  =  ( ( RR*  X. 
RR* )  \  `'  <  )
cmin 7933 class  -
cneg 7934 class  -u A
df-sub 7935 |- 
-  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
df-neg 7936 |-  -u A  =  (
0  -  A )
creap 8336 class #
df-reap 8337 |- #  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  ( x  <  y  \/  y  <  x ) ) }
cap 8343 class #
df-ap 8344 |- #  =  { <. x ,  y
>.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
cdiv 8432 class  /
df-div 8433 |- 
/  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) )
cn 8720 class  NN
df-inn 8721 |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
c2 8771 class  2
c3 8772 class  3
c4 8773 class  4
c5 8774 class  5
c6 8775 class  6
c7 8776 class  7
c8 8777 class  8
c9 8778 class  9
df-2 8779 |-  2  =  ( 1  +  1 )
df-3 8780 |-  3  =  ( 2  +  1 )
df-4 8781 |-  4  =  ( 3  +  1 )
df-5 8782 |-  5  =  ( 4  +  1 )
df-6 8783 |-  6  =  ( 5  +  1 )
df-7 8784 |-  7  =  ( 6  +  1 )
df-8 8785 |-  8  =  ( 7  +  1 )
df-9 8786 |-  9  =  ( 8  +  1 )
cn0 8977 class  NN0
df-n0 8978 |-  NN0  =  ( NN  u.  { 0 } )
cxnn0 9040 class NN0*
df-xnn0 9041 |- NN0* 
=  ( NN0  u.  { +oo } )
cz 9054 class  ZZ
df-z 9055 |-  ZZ  =  { n  e.  RR  |  ( n  =  0  \/  n  e.  NN  \/  -u n  e.  NN ) }
cdc 9182 class ; A B
df-dec 9183 |- ; A B  =  ( ( ( 9  +  1 )  x.  A )  +  B )
cuz 9326 class  ZZ>=
df-uz 9327 |-  ZZ>=  =  ( j  e.  ZZ  |->  { k  e.  ZZ  |  j  <_ 
k } )
cq 9411 class  QQ
df-q 9412 |-  QQ  =  (  /  " ( ZZ  X.  NN ) )
crp 9441 class  RR+
df-rp 9442 |-  RR+  =  { x  e.  RR  |  0  < 
x }
cxne 9556 class  -e A
cxad 9557 class  +e
cxmu 9558 class  xe
df-xneg 9559 |-  -e A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A
) )
df-xadd 9560 |-  +e  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if (
x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
df-xmul 9561 |-  xe  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 ,  if ( ( ( ( 0  <  y  /\  x  = +oo )  \/  ( y  <  0  /\  x  = -oo ) )  \/  ( ( 0  < 
x  /\  y  = +oo )  \/  (
x  <  0  /\  y  = -oo )
) ) , +oo ,  if ( ( ( ( 0  <  y  /\  x  = -oo )  \/  ( y  <  0  /\  x  = +oo ) )  \/  ( ( 0  < 
x  /\  y  = -oo )  \/  (
x  <  0  /\  y  = +oo )
) ) , -oo ,  ( x  x.  y ) ) ) ) )
cioo 9671 class  (,)
cioc 9672 class  (,]
cico 9673 class  [,)
cicc 9674 class  [,]
df-ioo 9675 |- 
(,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) } )
df-ioc 9676 |- 
(,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  <_ 
y ) } )
df-ico 9677 |- 
[,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  < 
y ) } )
df-icc 9678 |- 
[,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  <_ 
y ) } )
cfz 9790 class  ...
df-fz 9791 |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) } )
cfzo 9919 class ..^
df-fzo 9920 |- ..^ 
=  ( m  e.  ZZ ,  n  e.  ZZ  |->  ( m ... ( n  -  1
) ) )
cfl 10041 class  |_
cceil 10042 class
df-fl 10043 |-  |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  (
y  +  1 ) ) ) )
df-ceil 10044 |- =  ( x  e.  RR  |->  -u ( |_ `  -u x ) )
cmo 10095 class  mod
df-mod 10096 |- 
mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
cseq 10218 class  seq M (  .+  ,  F )
df-seqfrec 10219 |- 
seq M (  .+  ,  F )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
cexp 10292 class  ^
df-exp 10293 |- 
^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN 
X.  { x }
) ) `  y
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  -u y ) ) ) ) )
cfa 10471 class  !
df-fac 10472 |-  !  =  ( {
<. 0 ,  1
>. }  u.  seq 1
(  x.  ,  _I  ) )
cbc 10493 class  _C
df-bc 10494 |-  _C  =  ( n  e.  NN0 ,  k  e.  ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `  n
)  /  ( ( ! `  ( n  -  k ) )  x.  ( ! `  k ) ) ) ,  0 ) )
chash 10521 class
df-ihash 10522 |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
cshi 10586 class  shift
df-shft 10587 |- 
shift  =  ( f  e.  _V ,  x  e.  CC  |->  { <. y ,  z >.  |  ( y  e.  CC  /\  ( y  -  x
) f z ) } )
ccj 10611 class  *
cre 10612 class  Re
cim 10613 class  Im
df-cj 10614 |-  *  =  ( x  e.  CC  |->  ( iota_ y  e.  CC  ( ( x  +  y )  e.  RR  /\  ( _i  x.  ( x  -  y ) )  e.  RR ) ) )
df-re 10615 |-  Re  =  ( x  e.  CC  |->  ( ( x  +  ( * `  x ) )  / 
2 ) )
df-im 10616 |-  Im  =  ( x  e.  CC  |->  ( Re `  ( x  /  _i ) ) )
csqrt 10768 class  sqr
cabs 10769 class  abs
df-rsqrt 10770 |- 
sqr  =  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )
df-abs 10771 |- 
abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  (
* `  x )
) ) )
cli 11047 class  ~~>
df-clim 11048 |-  ~~>  =  { <. f ,  y
>.  |  ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) ) }
csu 11122 class  sum_ k  e.  A  B
df-sumdc 11123 |- 
sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
cprod 11319 class  prod_
k  e.  A  B
df-proddc 11320 |- 
prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
ce 11348 class  exp
ceu 11349 class  _e
csin 11350 class  sin
ccos 11351 class  cos
ctan 11352 class  tan
cpi 11353 class  pi
df-ef 11354 |-  exp  =  ( x  e.  CC  |->  sum_ k  e.  NN0  ( ( x ^
k )  /  ( ! `  k )
) )
df-e 11355 |-  _e  =  ( exp `  1 )
df-sin 11356 |- 
sin  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
df-cos 11357 |- 
cos  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) )
df-tan 11358 |- 
tan  =  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( sin `  x
)  /  ( cos `  x ) ) )
df-pi 11359 |-  pi  = inf ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  <  )
ctau 11481 class  tau
df-tau 11482 |- 
tau  = inf ( ( RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )
cdvds 11493 class  ||
df-dvds 11494 |- 
||  =  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. n  e.  ZZ  ( n  x.  x )  =  y ) }
cgcd 11635 class  gcd
df-gcd 11636 |- 
gcd  =  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  x  /\  n  ||  y ) } ,  RR ,  <  ) ) )
clcm 11741 class lcm
df-lcm 11742 |- lcm 
=  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) )
cprime 11788 class  Prime
df-prm 11789 |- 
Prime  =  { p  e.  NN  |  { n  e.  NN  |  n  ||  p }  ~~  2o }
cnumer 11859 class numer
cdenom 11860 class denom
df-numer 11861 |- numer  =  ( y  e.  QQ  |->  ( 1st `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
df-denom 11862 |- denom  =  ( y  e.  QQ  |->  ( 2nd `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
cphi 11886 class  phi
df-phi 11887 |- 
phi  =  ( n  e.  NN  |->  ( `  {
x  e.  ( 1 ... n )  |  ( x  gcd  n
)  =  1 } ) )
cstr 11955 class Struct
cnx 11956 class  ndx
csts 11957 class sSet
cslot 11958 class Slot  A
cbs 11959 class  Base
cress 11960 classs
df-struct 11961 |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f 
\  { (/) } )  /\  dom  f  C_  ( ... `  x ) ) }
df-ndx 11962 |- 
ndx  =  (  _I  |`  NN )
df-slot 11963 |- Slot  A  =  ( x  e.  _V  |->  ( x `  A ) )
df-base 11965 |- 
Base  = Slot  1
df-sets 11966 |- sSet 
=  ( s  e. 
_V ,  e  e. 
_V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u.  { e } ) )
df-ress 11967 |-s  =  ( w  e.  _V ,  x  e.  _V  |->  if ( ( Base `  w
)  C_  x ,  w ,  ( w sSet  <.
( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) ) )
cplusg 12021 class  +g
cmulr 12022 class  .r
cstv 12023 class  *r
csca 12024 class Scalar
cvsca 12025 class  .s
cip 12026 class  .i
cts 12027 class TopSet
cple 12028 class  le
coc 12029 class  oc
cds 12030 class  dist
cunif 12031 class  UnifSet
chom 12032 class  Hom
cco 12033 class comp
df-plusg 12034 |- 
+g  = Slot  2
df-mulr 12035 |- 
.r  = Slot  3
df-starv 12036 |-  *r  = Slot  4
df-sca 12037 |- Scalar  = Slot  5
df-vsca 12038 |-  .s  = Slot  6
df-ip 12039 |-  .i  = Slot  8
df-tset 12040 |- TopSet  = Slot  9
df-ple 12041 |- 
le  = Slot ; 1 0
df-ocomp 12042 |-  oc  = Slot ; 1 1
df-ds 12043 |-  dist 
= Slot ; 1 2
df-unif 12044 |- 
UnifSet  = Slot ; 1 3
df-hom 12045 |- 
Hom  = Slot ; 1 4
df-cco 12046 |- comp 
= Slot ; 1 5
crest 12120 classt
ctopn 12121 class  TopOpen
df-rest 12122 |-t  =  ( j  e.  _V ,  x  e.  _V  |->  ran  ( y  e.  j 
|->  ( y  i^i  x
) ) )
df-topn 12123 |-  TopOpen  =  ( w  e. 
_V  |->  ( (TopSet `  w )t  ( Base `  w
) ) )
ctg 12135 class  topGen
cpt 12136 class  Xt_
c0g 12137 class  0g
cgsu 12138 class  gsumg
df-0g 12139 |-  0g  =  ( g  e.  _V  |->  ( iota e
( e  e.  (
Base `  g )  /\  A. x  e.  (
Base `  g )
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x ) ) ) )
df-gsum 12140 |- 
gsumg  =  ( w  e. 
_V ,  f  e. 
_V  |->  [_ { x  e.  ( Base `  w
)  |  A. y  e.  ( Base `  w
) ( ( x ( +g  `  w
) y )  =  y  /\  ( y ( +g  `  w
) x )  =  y ) }  / 
o ]_ if ( ran  f  C_  o , 
( 0g `  w
) ,  if ( dom  f  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ,  ( iota x E. g [. ( `' f " ( _V 
\  o ) )  /  y ]. (
g : ( 1 ... ( `  y
) ) -1-1-onto-> y  /\  x  =  (  seq 1
( ( +g  `  w
) ,  ( f  o.  g ) ) `
 ( `  y
) ) ) ) ) ) )
df-topgen 12141 |- 
topGen  =  ( x  e. 
_V  |->  { y  |  y  C_  U. (
x  i^i  ~P y
) } )
df-pt 12142 |-  Xt_  =  ( f  e. 
_V  |->  ( topGen `  {
x  |  E. g
( ( g  Fn 
dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \ 
z ) ( g `
 y )  = 
U. ( f `  y ) )  /\  x  =  X_ y  e. 
dom  f ( g `
 y ) ) } ) )
cprds 12143 class  X_s
cpws 12144 class  ^s
df-prds 12145 |-  X_s  =  ( s  e. 
_V ,  r  e. 
_V  |->  [_ X_ x  e.  dom  r ( Base `  (
r `  x )
)  /  v ]_ [_ ( f  e.  v ,  g  e.  v 
|->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
df-pws 12147 |- 
^s  =  ( r  e. 
_V ,  i  e. 
_V  |->  ( (Scalar `  r ) X_s ( i  X.  {
r } ) ) )
cpsmet 12148 class PsMet
cxmet 12149 class  *Met
cmet 12150 class  Met
cbl 12151 class  ball
cfbas 12152 class  fBas
cfg 12153 class  filGen
cmopn 12154 class  MetOpen
cmetu 12155 class metUnif
df-psmet 12156 |- PsMet  =  ( x  e. 
_V  |->  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  ( (
y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  (
y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) } )
df-xmet 12157 |- 
*Met  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y ) +e ( w d z ) ) ) } )
df-met 12158 |- 
Met  =  ( x  e.  _V  |->  { d  e.  ( RR  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y )  +  ( w d z ) ) ) } )
df-bl 12159 |-  ball 
=  ( d  e. 
_V  |->  ( x  e. 
dom  dom  d ,  z  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  <  z } ) )
df-mopn 12160 |-  MetOpen  =  ( d  e. 
U. ran  *Met  |->  ( topGen `  ran  ( ball `  d ) ) )
df-fbas 12161 |- 
fBas  =  ( w  e.  _V  |->  { x  e. 
~P ~P w  |  ( x  =/=  (/)  /\  (/)  e/  x  /\  A. y  e.  x  A. z  e.  x  ( x  i^i  ~P (
y  i^i  z )
)  =/=  (/) ) } )
df-fg 12162 |-  filGen  =  ( w  e. 
_V ,  x  e.  ( fBas `  w
)  |->  { y  e. 
~P w  |  ( x  i^i  ~P y
)  =/=  (/) } )
df-metu 12163 |- metUnif  =  ( d  e. 
U. ran PsMet  |->  ( ( dom  dom  d  X.  dom  dom  d ) filGen ran  (
a  e.  RR+  |->  ( `' d " ( 0 [,) a ) ) ) ) )
ctop 12164 class  Top
df-top 12165 |- 
Top  =  { x  |  ( A. y  e.  ~P  x U. y  e.  x  /\  A. y  e.  x  A. z  e.  x  ( y  i^i  z )  e.  x
) }
ctopon 12177 class TopOn
df-topon 12178 |- TopOn  =  ( b  e. 
_V  |->  { j  e. 
Top  |  b  =  U. j } )
ctps 12197 class  TopSp
df-topsp 12198 |- 
TopSp  =  { f  |  ( TopOpen `  f
)  e.  (TopOn `  ( Base `  f )
) }
ctb 12209 class  TopBases
df-bases 12210 |-  TopBases  =  { x  | 
A. y  e.  x  A. z  e.  x  ( y  i^i  z
)  C_  U. (
x  i^i  ~P (
y  i^i  z )
) }
ccld 12261 class  Clsd
cnt 12262 class  int
ccl 12263 class  cls
df-cld 12264 |- 
Clsd  =  ( j  e.  Top  |->  { x  e. 
~P U. j  |  ( U. j  \  x
)  e.  j } )
df-ntr 12265 |- 
int  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
U. ( j  i^i 
~P x ) ) )
df-cls 12266 |- 
cls  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
|^| { y  e.  (
Clsd `  j )  |  x  C_  y } ) )
cnei 12307 class  nei
df-nei 12308 |- 
nei  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  { y  e.  ~P U. j  |  E. g  e.  j  ( x  C_  g  /\  g  C_  y ) } ) )
ccn 12354 class  Cn
ccnp 12355 class  CnP
clm 12356 class  ~~> t
df-cn 12357 |-  Cn  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f " y
)  e.  j } )
df-cnp 12358 |- 
CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } ) )
df-lm 12359 |-  ~~> t  =  ( j  e. 
Top  |->  { <. f ,  x >.  |  (
f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
ctx 12421 class  tX
df-tx 12422 |-  tX  =  ( r  e. 
_V ,  s  e. 
_V  |->  ( topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
) ) ) )
chmeo 12469 class  Homeo
df-hmeo 12470 |- 
Homeo  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( j  Cn  k
)  |  `' f  e.  ( k  Cn  j ) } )
cxms 12505 class  *MetSp
cms 12506 class  MetSp
ctms 12507 class toMetSp
df-xms 12508 |- 
*MetSp  =  { f  e.  TopSp  |  ( TopOpen `  f )  =  (
MetOpen `  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) ) ) }
df-ms 12509 |-  MetSp  =  { f  e.  *MetSp  |  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) )  e.  ( Met `  ( Base `  f ) ) }
df-tms 12510 |- toMetSp  =  ( d  e. 
U. ran  *Met  |->  ( { <. ( Base `  ndx ) ,  dom  dom  d >. ,  <. ( dist `  ndx ) ,  d >. } sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  d ) >. ) )
ccncf 12726 class  -cn->
df-cncf 12727 |- 
-cn->  =  ( a  e. 
~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a )  | 
A. x  e.  a 
A. e  e.  RR+  E. d  e.  RR+  A. y  e.  a  ( ( abs `  ( x  -  y ) )  < 
d  ->  ( abs `  ( ( f `  x )  -  (
f `  y )
) )  <  e
) } )
climc 12792 class lim CC
cdv 12793 class  _D
df-limced 12794 |- lim
CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  e.  CC  |  ( ( f : dom  f --> CC  /\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) ) } )
df-dvap 12795 |- 
_D  =  ( s  e.  ~P CC , 
f  e.  ( CC 
^pm  s )  |->  U_ x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t  s ) ) `  dom  f ) ( { x }  X.  (
( z  e.  {
w  e.  dom  f  |  w #  x }  |->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
The list of syntax, axioms (ax-) and definitions (df-) for the starts here
wdcin 13000 wff 
A DECIDin  B
df-dcin 13001 |-  ( A DECIDin  B 
<-> 
A. x  e.  B DECID  x  e.  A )
wbd 13010 wff BOUNDED  ph
ax-bd0 13011 |-  ( ph  <->  ps )   =>    |-  (BOUNDED  ph  -> BOUNDED  ps )
ax-bdim 13012 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  ->  ps )
ax-bdan 13013 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  /\  ps )
ax-bdor 13014 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  \/  ps )
ax-bdn 13015 |- BOUNDED  ph   =>    |- BOUNDED  -.  ph
ax-bdal 13016 |- BOUNDED  ph   =>    |- BOUNDED  A. x  e.  y 
ph
ax-bdex 13017 |- BOUNDED  ph   =>    |- BOUNDED  E. x  e.  y 
ph
ax-bdeq 13018 |- BOUNDED  x  =  y
ax-bdel 13019 |- BOUNDED  x  e.  y
ax-bdsb 13020 |- BOUNDED  ph   =>    |- BOUNDED  [ y  /  x ] ph
wbdc 13038 wff BOUNDED  A
df-bdc 13039 |-  (BOUNDED  A 
<-> 
A. xBOUNDED  x  e.  A )
ax-bdsep 13082 |- BOUNDED  ph   =>    |-  A. a E. b A. x
( x  e.  b  <-> 
( x  e.  a  /\  ph ) )
ax-bj-d0cl 13122 |- BOUNDED  ph   =>    |- DECID  ph
wind 13124 wff Ind  A
df-bj-ind 13125 |-  (Ind  A  <->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
ax-infvn 13139 |- 
E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y
) )
ax-bdsetind 13166 |- BOUNDED  ph   =>    |-  ( A. a ( A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
ax-inf2 13174 |- 
E. a A. x
( x  e.  a  <-> 
( x  =  (/)  \/ 
E. y  e.  a  x  =  suc  y
) )
ax-strcoll 13180 |- 
A. a ( A. x  e.  a  E. y ph  ->  E. b A. y ( y  e.  b  <->  E. x  e.  a 
ph ) )
ax-sscoll 13185 |- 
A. a A. b E. c A. z ( A. x  e.  a  E. y  e.  b 
ph  ->  E. d  e.  c 
A. y ( y  e.  d  <->  E. x  e.  a  ph ) )
ax-ddkcomp 13187 |-  ( ( ( A 
C_  RR  /\  E. x  x  e.  A )  /\  E. x  e.  RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  < 
y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  y  <_  x  /\  (
( B  e.  R  /\  A. y  e.  A  y  <_  B )  ->  x  <_  B ) ) )
walsi 13242 wff  A.! x ( ph  ->  ps )
walsc 13243 wff  A.! x  e.  A ph
df-alsi 13244 |-  ( A.! x (
ph  ->  ps )  <->  ( A. x ( ph  ->  ps )  /\  E. x ph ) )
df-alsc 13245 |-  ( A.! x  e.  A ph  <->  ( A. x  e.  A  ph  /\  E. x  x  e.  A
) )
  Copyright terms: Public domain W3C validator