![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpgbir | Unicode version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
mpgbir.2 |
![]() ![]() |
Ref | Expression |
---|---|
mpgbir |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 |
. . 3
![]() ![]() | |
2 | 1 | ax-gen 1379 |
. 2
![]() ![]() ![]() ![]() |
3 | mpgbir.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpbir 144 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1379 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: nfi 1392 cvjust 2077 eqriv 2079 abbi2i 2194 nfci 2210 abid2f 2244 rgen 2417 ssriv 3004 ss2abi 3067 ssmin 3663 intab 3673 iunab 3732 iinab 3747 sndisj 3789 disjxsn 3791 intid 3987 fr0 4114 zfregfr 4324 peano1 4343 relssi 4457 dm0 4577 dmi 4578 funopabeq 4966 isarep2 5017 fvopab3ig 5278 opabex 5417 acexmid 5542 dfuzi 8538 fzodisj 9264 fzouzdisj 9266 bdelir 10796 |
Copyright terms: Public domain | W3C validator |