ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0enne Unicode version

Theorem nn0enne 10446
Description: A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
nn0enne  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN0  <->  ( N  /  2 )  e.  NN ) )

Proof of Theorem nn0enne
StepHypRef Expression
1 elnn0 8357 . . . 4  |-  ( ( N  /  2 )  e.  NN0  <->  ( ( N  /  2 )  e.  NN  \/  ( N  /  2 )  =  0 ) )
2 nncn 8114 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
3 2cnd 8179 . . . . . . . 8  |-  ( N  e.  NN  ->  2  e.  CC )
4 2ap0 8199 . . . . . . . . 9  |-  2 #  0
54a1i 9 . . . . . . . 8  |-  ( N  e.  NN  ->  2 #  0 )
62, 3, 5diveqap0ad 7954 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  /  2
)  =  0  <->  N  =  0 ) )
7 eleq1 2142 . . . . . . . . 9  |-  ( N  =  0  ->  ( N  e.  NN  <->  0  e.  NN ) )
8 0nnn 8133 . . . . . . . . . 10  |-  -.  0  e.  NN
98pm2.21i 608 . . . . . . . . 9  |-  ( 0  e.  NN  ->  ( N  /  2 )  e.  NN )
107, 9syl6bi 161 . . . . . . . 8  |-  ( N  =  0  ->  ( N  e.  NN  ->  ( N  /  2 )  e.  NN ) )
1110com12 30 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  =  0  ->  ( N  /  2 )  e.  NN ) )
126, 11sylbid 148 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  /  2
)  =  0  -> 
( N  /  2
)  e.  NN ) )
1312com12 30 . . . . 5  |-  ( ( N  /  2 )  =  0  ->  ( N  e.  NN  ->  ( N  /  2 )  e.  NN ) )
1413jao1i 743 . . . 4  |-  ( ( ( N  /  2
)  e.  NN  \/  ( N  /  2
)  =  0 )  ->  ( N  e.  NN  ->  ( N  /  2 )  e.  NN ) )
151, 14sylbi 119 . . 3  |-  ( ( N  /  2 )  e.  NN0  ->  ( N  e.  NN  ->  ( N  /  2 )  e.  NN ) )
1615com12 30 . 2  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN0  ->  ( N  /  2 )  e.  NN ) )
17 nnnn0 8362 . 2  |-  ( ( N  /  2 )  e.  NN  ->  ( N  /  2 )  e. 
NN0 )
1816, 17impbid1 140 1  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN0  <->  ( N  /  2 )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    \/ wo 662    = wceq 1285    e. wcel 1434   class class class wbr 3793  (class class class)co 5543   0cc0 7043   # cap 7748    / cdiv 7827   NNcn 8106   2c2 8156   NN0cn0 8355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-id 4056  df-po 4059  df-iso 4060  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-2 8165  df-n0 8356
This theorem is referenced by:  nnehalf  10448
  Copyright terms: Public domain W3C validator