ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnindnn Unicode version

Theorem nnindnn 7121
Description: Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 8122 designed for real number axioms which involve natural numbers (notably, axcaucvg 7128). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypotheses
Ref Expression
nntopi.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
nnindnn.1  |-  ( z  =  1  ->  ( ph 
<->  ps ) )
nnindnn.y  |-  ( z  =  k  ->  ( ph 
<->  ch ) )
nnindnn.y1  |-  ( z  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
nnindnn.a  |-  ( z  =  A  ->  ( ph 
<->  ta ) )
nnindnn.basis  |-  ps
nnindnn.step  |-  ( k  e.  N  ->  ( ch  ->  th ) )
Assertion
Ref Expression
nnindnn  |-  ( A  e.  N  ->  ta )
Distinct variable groups:    x, y    z,
k    z, A    ps, z    ch, z    th, z    ta, z    ph, k    k, N, y, z    x, N, z    ph, x, y
Allowed substitution hints:    ph( z)    ps( x, y, k)    ch( x, y, k)    th( x, y, k)    ta( x, y, k)    A( x, y, k)

Proof of Theorem nnindnn
StepHypRef Expression
1 nntopi.n . . . . . . 7  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
21peano1nnnn 7082 . . . . . 6  |-  1  e.  N
3 nnindnn.basis . . . . . 6  |-  ps
4 nnindnn.1 . . . . . . 7  |-  ( z  =  1  ->  ( ph 
<->  ps ) )
54elrab 2750 . . . . . 6  |-  ( 1  e.  { z  e.  N  |  ph }  <->  ( 1  e.  N  /\  ps ) )
62, 3, 5mpbir2an 884 . . . . 5  |-  1  e.  { z  e.  N  |  ph }
7 elrabi 2747 . . . . . . 7  |-  ( k  e.  { z  e.  N  |  ph }  ->  k  e.  N )
81peano2nnnn 7083 . . . . . . . . . 10  |-  ( k  e.  N  ->  (
k  +  1 )  e.  N )
98a1d 22 . . . . . . . . 9  |-  ( k  e.  N  ->  (
k  e.  N  -> 
( k  +  1 )  e.  N ) )
10 nnindnn.step . . . . . . . . 9  |-  ( k  e.  N  ->  ( ch  ->  th ) )
119, 10anim12d 328 . . . . . . . 8  |-  ( k  e.  N  ->  (
( k  e.  N  /\  ch )  ->  (
( k  +  1 )  e.  N  /\  th ) ) )
12 nnindnn.y . . . . . . . . 9  |-  ( z  =  k  ->  ( ph 
<->  ch ) )
1312elrab 2750 . . . . . . . 8  |-  ( k  e.  { z  e.  N  |  ph }  <->  ( k  e.  N  /\  ch ) )
14 nnindnn.y1 . . . . . . . . 9  |-  ( z  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
1514elrab 2750 . . . . . . . 8  |-  ( ( k  +  1 )  e.  { z  e.  N  |  ph }  <->  ( ( k  +  1 )  e.  N  /\  th ) )
1611, 13, 153imtr4g 203 . . . . . . 7  |-  ( k  e.  N  ->  (
k  e.  { z  e.  N  |  ph }  ->  ( k  +  1 )  e.  {
z  e.  N  |  ph } ) )
177, 16mpcom 36 . . . . . 6  |-  ( k  e.  { z  e.  N  |  ph }  ->  ( k  +  1 )  e.  { z  e.  N  |  ph } )
1817rgen 2417 . . . . 5  |-  A. k  e.  { z  e.  N  |  ph }  ( k  +  1 )  e. 
{ z  e.  N  |  ph }
191peano5nnnn 7120 . . . . 5  |-  ( ( 1  e.  { z  e.  N  |  ph }  /\  A. k  e. 
{ z  e.  N  |  ph }  ( k  +  1 )  e. 
{ z  e.  N  |  ph } )  ->  N  C_  { z  e.  N  |  ph }
)
206, 18, 19mp2an 417 . . . 4  |-  N  C_  { z  e.  N  |  ph }
2120sseli 2996 . . 3  |-  ( A  e.  N  ->  A  e.  { z  e.  N  |  ph } )
22 nnindnn.a . . . 4  |-  ( z  =  A  ->  ( ph 
<->  ta ) )
2322elrab 2750 . . 3  |-  ( A  e.  { z  e.  N  |  ph }  <->  ( A  e.  N  /\  ta ) )
2421, 23sylib 120 . 2  |-  ( A  e.  N  ->  ( A  e.  N  /\  ta ) )
2524simprd 112 1  |-  ( A  e.  N  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   {cab 2068   A.wral 2349   {crab 2353    C_ wss 2974   |^|cint 3644  (class class class)co 5543   1c1 7044    + caddc 7046
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-eprel 4052  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-1o 6065  df-2o 6066  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-pli 6557  df-mi 6558  df-lti 6559  df-plpq 6596  df-mpq 6597  df-enq 6599  df-nqqs 6600  df-plqqs 6601  df-mqqs 6602  df-1nqqs 6603  df-rq 6604  df-ltnqqs 6605  df-enq0 6676  df-nq0 6677  df-0nq0 6678  df-plq0 6679  df-mq0 6680  df-inp 6718  df-i1p 6719  df-iplp 6720  df-enr 6965  df-nr 6966  df-plr 6967  df-0r 6970  df-1r 6971  df-c 7049  df-1 7051  df-r 7053  df-add 7054
This theorem is referenced by:  nntopi  7122
  Copyright terms: Public domain W3C validator