![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim12d | Unicode version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
Ref | Expression |
---|---|
anim12d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
anim12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anim12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | anim12d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | idd 21 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2and 289 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: anim1d 329 anim2d 330 prth 336 im2anan9 563 anim12dan 565 3anim123d 1251 hband 1419 hbbid 1508 spsbim 1766 moim 2007 moimv 2009 2euswapdc 2034 rspcimedv 2712 soss 4097 trin2 4766 xp11m 4809 funss 4970 fun 5114 dff13 5459 f1eqcocnv 5482 isores3 5506 isosolem 5514 f1o2ndf1 5900 tposfn2 5935 tposf1o2 5939 nndifsnid 6167 nnaordex 6187 supmoti 6500 isotilem 6513 recexprlemss1l 6939 recexprlemss1u 6940 caucvgsrlemoffres 7090 nnindnn 7173 lemul12b 8058 lt2msq 8083 lbreu 8142 cju 8157 nnind 8174 uz11 8774 xrre2 9016 ico0 9400 ioc0 9401 expcan 9793 gcdaddm 10582 bezoutlemaz 10599 bezoutlembz 10600 isprm3 10707 |
Copyright terms: Public domain | W3C validator |